Competitive and Cost Effective high-k based 28nm CMOS Technology for Low Power Applications

被引:0
|
作者
Arnaud, F.
Thean, A.
Eller, M.
Lipinski, M.
Teh, Y. W.
Ostermayr, M.
Kang, K.
Kim, N. S.
Ohuchi, K.
Han, J-P.
Nair, D. R.
Lian, J.
Uchimura, S.
Kohler, S.
Miyaki, S.
Ferreira, P.
Park, J-H.
Hamaguchi, M.
Miyashita, K.
Augur, R.
Zhang, Q.
Strahrenberg, K.
ElGhouli, S.
Bonnouvrier, J.
Matsuoka, F.
Lindsay, R.
Sudijono, J.
Johnson, F. S.
Ku, J. H.
Sekine, M.
Steegen, A.
Sampson, R.
机构
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we present a cost-effective 28nm CMOS technology for low power (LP) applications based on a high-k, single-metal-gate-first architecture. We report raw gate densities up to 4200 kGate/mm(2), and, using the ARM Cortex-R4F as a reference, we report achievement of an overall 2.4x area reduction in 28nm from 45nm technology. Our high-density SRAM bit-cell (area= 0.120mm(2)) has a demonstrated Static Noise Margin (SNM) of 213mV at IV. Fully compatible with power/leakage management techniques intensively used in low power designs, the transistor drive currents are increased +35% & +10%, for nFET and pFET respectively, with respect to a 28nm LP poly/SiON reference [3]. Compatible with LP system-on-chip requirements, ultra low-cost, high performance analog devices are reported which leverage a dramatic improvement in matching factor (AVT similar to 2mV.um) versus our previously-reported result [2]. An optimized interconnection scheme based on Extreme Low k (ELK) dielectric (k similar to 2.4) and advanced metallization allows high density wiring with competitive R-C versus our previous technology.
引用
收藏
页码:603 / 606
页数:4
相关论文
共 50 条
  • [21] A 32nm Low Power RF CMOS SOC Technology Featuring High-k/Metal Gate
    VanDerVoorn, P.
    Agostinelli, M.
    Choi, S. -J.
    Curello, G.
    Deshpande, H.
    El-Tanani, M. A.
    Hafez, W.
    Jalan, U.
    Janbay, L.
    Kang, M.
    Koh, K. -J.
    Komeyli, K.
    Lakdawala, H.
    Lin, J.
    Lindert, N.
    Mudanai, S.
    Park, J.
    Phoa, K.
    Rahman, A.
    Rizk, J.
    Rockford, L.
    Sacks, G.
    Soumyanath, K.
    Tashiro, H.
    Taylor, S.
    Tsai, C.
    Xu, H.
    Xu, J.
    Yang, L.
    Young, I.
    Yeh, J. -Y.
    Yip, J.
    Bai, P.
    Jan, C. -H.
    2010 SYMPOSIUM ON VLSI TECHNOLOGY, DIGEST OF TECHNICAL PAPERS, 2010, : 137 - +
  • [22] High-k Metal Gate Poly Opening Polish at 28nm Technology Polish Rate and Selective Study
    Sie, W. S.
    Liu, Y. L.
    Chen, J. L.
    Hong, W. C.
    Huang, R. P.
    Huang, P. C.
    Li, Y. T.
    Lin, C. H.
    Kung, C. H.
    Lin, Y. M.
    Lin, R. G.
    Hsu, H. K.
    Wang, Oliver
    Lin, J. F.
    2014 INTERNATIONAL CONFERENCE ON PLANARIZATION/CMP TECHNOLOGY (ICPT), 2014, : 183 - 185
  • [23] Low-Power 60GHz Receiver with an Integrated Analog Baseband for FMCW Radar Applications in 28nm CMOS Technology
    Ciocoveanu, Radu
    Issakov, Vadim
    2021 IEEE 21ST TOPICAL MEETING ON SILICON MONOLITHIC INTEGRATED CIRCUITS IN RF SYSTEMS (SIRF), 2021, : 4 - 6
  • [24] Study on the ESD-Induced Gate-Oxide Breakdown and the Protection Solution in 28nm High-K Metal-Gate CMOS Technology
    Lin, Chun-Yu
    Ker, Ming-Dou
    Chang, Pin-Hsin
    Wang, Wen-Tai
    2015 IEEE NANOTECHNOLOGY MATERIALS AND DEVICES CONFERENCE (NMDC), 2015,
  • [25] A Novel "Hybrid" High-k/Metal Gate Process For 28nm High Performance CMOSFETs
    Lai, C. M.
    Lin, C. T.
    Cheng, L. W.
    Hsu, C. H.
    Tseng, J. T.
    Chiang, T. F.
    Chou, C. H.
    Chen, Y. W.
    Yu, C. H.
    Hsu, S. H.
    Chen, C. G.
    Lee, Z. C.
    Lin, J. F.
    Yang, C. L.
    Ma, G. H.
    Chien, S. C.
    2009 IEEE INTERNATIONAL ELECTRON DEVICES MEETING, 2009, : 607 - 610
  • [26] A Low-Power 6.6-Gb/s Wireline Transceiver for Low-Cost FPGAs in 28nm CMOS
    Savoj, Jafar
    Hsieh, Kenny
    An, Fu-Tai
    Buckley, Michael
    Im, Jay
    Jiang, Xuewen
    Jose, Anup
    Kireev, Vassili
    Lai, Kang Wei
    Pham, Hiep
    Turker, Didem
    Wu, Daniel
    Chang, Ken
    2012 IEEE ASIAN SOLID STATE CIRCUITS CONFERENCE (A-SSCC), 2012, : 37 - 40
  • [27] A 28nm HKMG super low power embedded NVM technology based on ferroelectric FETs
    Trentzsch, M.
    Flachowsky, S.
    Richter, R.
    Paul, J.
    Reimer, B.
    Utess, D.
    Jansen, S.
    Mulaosmanovic, H.
    Mueller, S.
    Slesazeck, S.
    Ocker, J.
    Noack, M.
    Mueller, J.
    Polakowski, P.
    Schreiter, J.
    Beyer, S.
    Mikolajick, T.
    Rice, B.
    2016 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2016,
  • [28] Fluorine interface treatments within the gate stack for defect passivation in 28nm high-k metal gate technology
    Drescher, Maximilian
    Naumann, Andreas
    Sundqvist, Jonas
    Erben, Elke
    Grass, Carsten
    Trentzsch, Martin
    Lazarevic, Florian
    Leitsmann, Roman
    Plaenitz, Philipp
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2015, 33 (02):
  • [29] A Novel Compact CBCM Method for High Resolution Measurement in 28nm CMOS Technology
    Dia, Kin Hooi
    Tsao, Willy
    Chien, Cheng Hsing
    Zeng, Zheng
    2012 IEEE INTERNATIONAL CONFERENCE ON MICROELECTRONIC TEST STRUCTURES (ICMTS), 2012, : 119 - 121
  • [30] A 30 GHz Low Power & High Gain Low Noise Amplifier with Gm-boosting in 28nm FD-SOI CMOS Technology
    Konidas, Georgios
    Gkoutis, Panagiotis
    Kolios, Vasilis
    Kalivas, Grigorios
    2019 8TH INTERNATIONAL CONFERENCE ON MODERN CIRCUITS AND SYSTEMS TECHNOLOGIES (MOCAST), 2019,