Magnetic Hyperthermia-Synergistic H2O2 Self-Sufficient Catalytic Suppression of Osteosarcoma with Enhanced Bone-Regeneration Bioactivity by 3D-Printing Composite Scaffolds

被引:147
作者
Dong, Shaojie [1 ,2 ]
Chen, Yu [3 ]
Yu, Luodan [3 ]
Lin, Kaili [1 ]
Wang, Xudong [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Oral & Cranio Maxillofacial Surg,Inst Stomat, Shanghai Peoples Hosp 9,Shanghai Key Lab Stomatol, Coll Stomatol,Sch Med,Natl Clin Res Ctr Oral Dis, Shanghai 200011, Peoples R China
[2] Tongji Univ, Sch & Hosp Stomatol, Shanghai Engn Res Ctr Tooth Restorat & Regenerat, Shanghai 200072, Peoples R China
[3] Chinese Acad Sci, State Key Lab High Performance Ceram & Superfine, Shanghai Inst Ceram, Shanghai 200050, Peoples R China
关键词
bone regeneration; magnetic hyperthermia; nanocatalytic therapy; osteosarcoma; scaffolds; IRON-OXIDE NANOPARTICLES; MARROW STROMAL CELLS; OSTEOGENIC DIFFERENTIATION; PROTEIN ADSORPTION; CALCIUM-PHOSPHATE; TUMOR; THERAPY; NANOCATALYST; TOXICITY; COATINGS;
D O I
10.1002/adfm.201907071
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Chemotherapy resistance and bone defects caused by surgical excision of osteosarcoma have been formidable challenges for clinical treatment. Although recently developed nanocatalysts based on Fenton-like reactions for catalytic therapy demonstrate high potential to eliminate chemotherapeutic-insensitive tumors, insufficient concentration of intrinsic hydrogen peroxide (H2O2) and low intratumoral penetrability hinder their applications and therapeutic efficiency. The synchronous enriching intratumor H2O2 amount or nanoagents and promoting osteogenesis are intriguing strategies to solve the dilemma in osteosarcoma therapy. Herein, a multifunctional "all-in-one" biomaterial platform is constructed by co-loading calcium peroxide (CaO2) and iron oxide (Fe3O4) nanoparticles into a three-dimensional (3D) printing akermanite scaffold (AKT-Fe3O4-CaO2). The loaded CaO2 nanoparticles act as H2O2 sources to achieve H2O2 self-sufficient nanocatalytic osteosarcoma therapy as catalyzed by coloaded Fe3O4 nanoagents, as well as provide calcium ion (Ca2+) pools to enhance bone regeneration. The synergistic osteosarcoma-therapeutic effect is achieved from both magnetic hyperthermia as-enabled by Fe3O4 nanoparticles under alternative magnetic fields and hyperthermia-enhanced Fenton-like nanocatalytic reaction for producing highly toxic hydroxyl radicals. Importantly, the constructed 3D AKT-Fe3O4-CaO2 composite scaffolds are featured with favorable bone-regeneration activity, providing a worthy base and positive enlightenment for future osteosarcoma treatment with bone defects by the multifunctional biomaterial platforms.
引用
收藏
页数:15
相关论文
共 83 条
  • [1] Self-Assembled Peptide- and Protein-Based Nanomaterials for Antitumor Photodynamic and Photothermal Therapy
    Abbas, Manzar
    Zou, Qianli
    Li, Shukun
    Yan, Xuehai
    [J]. ADVANCED MATERIALS, 2017, 29 (12)
  • [2] In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles
    Arami, Hamed
    Khandhar, Amit
    Liggitt, Denny
    Krishnan, Kannan M.
    [J]. CHEMICAL SOCIETY REVIEWS, 2015, 44 (23) : 8576 - 8607
  • [3] A calcium-induced signaling cascade leading to osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells
    Barradas, Ana M. C.
    Fernandes, Hugo A. M.
    Groen, Nathalie
    Chai, Yoke Chin
    Schrooten, Jan
    van de Peppel, Jeroen
    van Leeuwen, Johannes P. T. M.
    van Blitterswijk, Clemens A.
    de Boer, Jan
    [J]. BIOMATERIALS, 2012, 33 (11) : 3205 - 3215
  • [5] Recurrent mutation of IGF signalling genes and distinct patterns of genomic rearrangement in osteosarcoma
    Behjati, Sam
    Tarpey, Patrick S.
    Haase, Kerstin
    Ye, Hongtao
    Young, Matthew D.
    Alexandrov, Ludmil B.
    Farndon, Sarah J.
    Collord, Grace
    Wedge, David C.
    Martincorena, Inigo
    Cooke, Susanna L.
    Davies, Helen
    Mifsud, William
    Lidgren, Mathias
    Martin, Sancha
    Latimer, Calli
    Maddison, Mark
    Butler, Adam P.
    Teague, Jon W.
    Pillay, Nischalan
    Shlien, Adam
    McDermott, Ultan
    Futreal, P. Andrew
    Baumhoer, Daniel
    Zaikova, Olga
    Bjerkehagen, Bodil
    Myklebost, Ola
    Amary, M. Fernanda
    Tirabosco, Roberto
    Van Loo, Peter
    Stratton, Michael R.
    Flanagan, Adrienne M.
    Campbell, Peter J.
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [6] Bone tissue engineering using 3D printing
    Bose, Susmita
    Vahabzadeh, Sahar
    Bandyopadhyay, Amit
    [J]. MATERIALS TODAY, 2013, 16 (12) : 496 - 504
  • [7] Recent insights in magnetic hyperthermia: From the "hot-spot" effect for local delivery to combined magneto-photo-thermia using magneto-plasmonic hybrids
    Cazares-Cortes, Esther
    Cabana, Sonia
    Boitard, Charlotte
    Nehlig, Emilie
    Griffete, Nebewia
    Fresnais, Jerome
    Wilhelm, Claire
    Abou-Hassan, Ali
    Menager, Christine
    [J]. ADVANCED DRUG DELIVERY REVIEWS, 2019, 138 : 233 - 246
  • [8] Facile syntheses of conjugated polymers for photothermal tumour therapy
    Chen, Peiyao
    Ma, Yinchu
    Zheng, Zhen
    Wu, Chengfan
    Wang, Yucai
    Liang, Gaolin
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [9] Magnetic hydroxyapatite coatings with oriented nanorod arrays: hydrothermal synthesis, structure and biocompatibility
    Chen, Wei
    Long, Teng
    Guo, Ya-Jun
    Zhu, Zhen-An
    Guo, Ya-Ping
    [J]. JOURNAL OF MATERIALS CHEMISTRY B, 2014, 2 (12) : 1653 - 1660
  • [10] Dual Enzyme-like Activities of Iron Oxide Nanoparticles and Their Implication for Diminishing Cytotoxicity
    Chen, Zhongwen
    Yin, Jun-Jie
    Zhou, Yu-Ting
    Zhang, Yu
    Song, Lina
    Song, Mengjie
    Hu, Sunling
    Gu, Ning
    [J]. ACS NANO, 2012, 6 (05) : 4001 - 4012