A stabilized meshless method for the solution of the lagrangian equations of newtonian fluids

被引:0
作者
Urrecha, M. [1 ]
Romero, I. [1 ,2 ]
机构
[1] Univ Politecn Madrid, ETS Ingn Ind, Jose Gutierrez Abascal 2, E-28006 Madrid, Spain
[2] IMDEA Mat, Eric Kandel 2, Madrid 28906, Spain
来源
REVISTA INTERNACIONAL DE METODOS NUMERICOS PARA CALCULO Y DISENO EN INGENIERIA | 2016年 / 32卷 / 02期
关键词
Meshless methods; Stabilization; Lagrangian fluids; FINITE-ELEMENT FORMULATION; STOKES PROBLEM; APPROXIMATION; DYNAMICS; FLOWS;
D O I
10.1016/j.rimni.2015.02.006
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this article we present numerical methods for the approximation of incompressible flows. We have addressed three problems: the stationary Stokes' problem, the transient Stokes' problem, and the general motion of newtonian fluids. In the three cases a discretization is employed that does not require a mesh of the domain but uses maximum entropy approximation functions. To guarantee the robustness of the solution a stabilization technique is employed. The most general problem, that of the motion of newtonian fluids, is formulated in lagrangian form. The results presented verify that stabilized meshless methods can be a competitive alternative to other approached currently in use. (C) 2014 CIMNE (Universitat Politecnica de Catalunya). Published by Elsevier Espana, S.L.U.
引用
收藏
页码:116 / 124
页数:9
相关论文
共 19 条
[1]  
[Anonymous], 2013, SERIES COMPUTATIONAL
[2]  
[Anonymous], 1983, MATH FDN ELASTICITY
[3]   Local maximum-entropy approximation schemes:: a seamless bridge between finite elements and meshfree methods [J].
Arroyo, M ;
Ortiz, M .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2006, 65 (13) :2167-2202
[4]   A taxonomy of consistently stabilized finite element methods for the Stokes problem [J].
Barth, T ;
Bochev, P ;
Gunzburger, M ;
Shadid, J .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 25 (05) :1585-1607
[5]   A Lagrangian finite element approach for the analysis of fluid-structure interaction problems [J].
Cremonesi, M. ;
Frangi, A. ;
Perego, U. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 84 (05) :610-630
[6]  
DOUGLAS J, 1989, MATH COMPUT, V52, P495, DOI 10.1090/S0025-5718-1989-0958871-X
[7]  
Hughes Thomas J., 1987, FINITE ELEMENT METHO
[8]   A NEW FINITE-ELEMENT FORMULATION FOR COMPUTATIONAL FLUID-DYNAMICS .5. CIRCUMVENTING THE BABUSKA-BREZZI CONDITION - A STABLE PETROV-GALERKIN FORMULATION OF THE STOKES PROBLEM ACCOMMODATING EQUAL-ORDER INTERPOLATIONS [J].
HUGHES, TJR ;
FRANCA, LP ;
BALESTRA, M .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1986, 59 (01) :85-99
[9]   The particle finite element method:: a powerful tool to solve incompressible flows with free-surfaces and breaking waves [J].
Idelsohn, SR ;
Oñate, E ;
Del Pin, F .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2004, 61 (07) :964-989