SOI-Supported Microdevice for Hydrogen Purification Using Palladium-Silver Membranes

被引:13
作者
Deshpande, Kishori [1 ]
Meldon, Jerry H. [2 ]
Schmidt, Martin A. [3 ]
Jensen, Klavs F. [4 ,5 ]
机构
[1] Dow Chem Co USA, Freeport, TX 77541 USA
[2] Tufts Univ, Dept Chem & Biol Engn, Medford, MA 02155 USA
[3] MIT, Microsyst Technol Labs, Cambridge, MA 02139 USA
[4] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[5] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
关键词
Hydrogen; micromachining; palladium alloys; silicon-on-insulator (SOI) technology; THIN PD; SEPARATION; MICROFABRICATION; PERMEATION; MICROMEMBRANES; PERFORMANCE; TECHNOLOGY; FUEL; TUBE;
D O I
10.1109/JMEMS.2010.2041529
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
High-purity hydrogen continues to receive attention as a promising energy source for fuel cells in portable power applications. On-demand hydrogen generation via fuel reforming offers a convenient alternative to hydrogen storage, but the concomitant CO generation is deleterious to the fuel cell catalyst. Of the possible hydrogen purification options, palladium membranes allow a compact design suitable for portable applications. We present a micromembrane device built in silicon-on-insulator wafers for hydrogen purification. The design imparts structural stability to a submicrometer-thick palladium-silver membrane, enabling hydrogen purification at higher pressures than were tolerated by previous devices with supported thin palladium membranes. The devices are manufactured using bulk micromachining techniques including photolithography, plasma, and wet etching. They are operated at pressures up to 2 atm with a correspondingly enhanced hydrogen flux. In particular, thin (200 nm) palladium-silver membrane yield high permeation rates of up to 50 mol/m(2)/s at 350 degrees C. The different transport resistances controlling hydrogen permeation in the micromembrane system are evaluated. [2009-0202]
引用
收藏
页码:402 / 409
页数:8
相关论文
共 25 条
[1]   Preparation of supported palladium membrane and separation of hydrogen [J].
Aoki, K ;
Yokoyama, S ;
Kusakabe, K ;
Morooka, S .
KOREAN JOURNAL OF CHEMICAL ENGINEERING, 1996, 13 (05) :530-537
[2]   A microfabricated suspended-tube chemical reactor for thermally efficient fuel processing [J].
Arana, LR ;
Schaevitz, SB ;
Franz, AJ ;
Schmidt, MA ;
Jensen, KF .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2003, 12 (05) :600-612
[3]   Characterization of masking materials for deep glass micromachining [J].
Bien, DCS ;
Rainey, PV ;
Mitchell, SJN ;
Gamble, HS .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2003, 13 (04) :S34-S40
[4]  
Bird R B., 2002, Transportphenomena
[5]   MEMS-based hydrogen gas sensors [J].
DiMeo, Frank, Jr. ;
Chen, Ing-Shin ;
Chen, Philip ;
Neuner, Jeffrey ;
Roerhl, Andreas ;
Welch, James .
SENSORS AND ACTUATORS B-CHEMICAL, 2006, 117 (01) :10-16
[6]   Replacing the battery in portable electronics [J].
Dyer, CK .
SCIENTIFIC AMERICAN, 1999, 281 (01) :88-93
[7]   Palladium based micromembranes for hydrogen separation and hydrogenation/dehydrogenation reactions [J].
Franz, AJ ;
Jensen, KF ;
Schmidt, MA .
MEMS '99: TWELFTH IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS, TECHNICAL DIGEST, 1999, :382-387
[8]   High efficiency and low carbon monoxide micro-scale methanol processors [J].
Holladay, JD ;
Jones, EO ;
Dagle, RA ;
Xia, GG ;
Cao, C ;
Wang, Y .
JOURNAL OF POWER SOURCES, 2004, 131 (1-2) :69-72
[9]   Towards a palladium micro-membrane for the water gas shift reaction: Microfabrication approach and hydrogen purification results [J].
Karnik, SV ;
Hatalis, MK ;
Kothare, MV .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2003, 12 (01) :93-100
[10]   High-flux palladium membranes based on microsystem technology [J].
Keurentjes, JTF ;
Gielens, FC ;
Tong, HD ;
van Rijn, CJM ;
Vorstman, MAG .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2004, 43 (16) :4768-4772