Unitary minimal Liouville gravity and Frobenius manifolds

被引:12
作者
Belavin, V. [1 ,2 ]
机构
[1] PN Lebedev Phys Inst, IE Tamm Dept Theoret Phys, Moscow 119991, Russia
[2] Inst Informat Transmiss Problems, Dept Quantum Phys, Moscow 127994, Russia
基金
俄罗斯科学基金会;
关键词
2D Gravity; Conformal Field Models in String Theory; Matrix Models; Integrable Hierarchies; 2-DIMENSIONAL QUANTUM-GRAVITY; ONE-DIMENSION; FIELD-THEORY; STRINGS; LESS; 2D;
D O I
10.1007/JHEP07(2014)129
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study unitary minimal models coupled to Liouville gravity using Douglas string equation. Our approach is based on the assumption that there exist an appropriate solution of the Douglas string equation and some special choice of the resonance transformation such that necessary selection rules of the minimal Liouville gravity are satisfied. We use the connection with the Frobenius manifold structure. We argue that the flat coordinates on the Frobenius manifold are the most appropriate choice for calculating correlation functions. We find the appropriate solution of the Douglas string equation and show that it has simple form in the flat coordinates. Important information is encoded in the structure constants of the Frobenius algebra. We derive these structure constants in the canonical coordinates and in the physically relevant domain in the flat coordinates. We find the leading terms of the resonance transformation and express the coefficients of the resonance transformation in terms of Jacobi polynomials.
引用
收藏
页数:18
相关论文
共 17 条
[1]   On correlation numbers in 2D minimal gravity and matrix models [J].
Belavin, A. A. ;
Zamolodchikov, A. B. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (30)
[2]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[3]   Minimal Liouville gravity correlation numbers from Douglas string equation [J].
Belavin, Alexander ;
Dubrovin, Boris ;
Mukhametzhanov, Baur .
JOURNAL OF HIGH ENERGY PHYSICS, 2014, (01)
[4]   EXACTLY SOLVABLE FIELD-THEORIES OF CLOSED STRINGS [J].
BREZIN, E ;
KAZAKOV, VA .
PHYSICS LETTERS B, 1990, 236 (02) :144-150
[5]   UNITARY MINIMAL MODELS COUPLED TO 2D QUANTUM-GRAVITY [J].
DIFRANCESCO, P ;
KUTASOV, D .
NUCLEAR PHYSICS B, 1990, 342 (03) :589-624
[6]   STRINGS IN LESS THAN ONE DIMENSION AND THE GENERALIZED KDV HIERARCHIES [J].
DOUGLAS, MR .
PHYSICS LETTERS B, 1990, 238 (2-4) :176-180
[7]   STRINGS IN LESS THAN ONE DIMENSION [J].
DOUGLAS, MR ;
SHENKER, SH .
NUCLEAR PHYSICS B, 1990, 335 (03) :635-654
[8]   INTEGRABLE SYSTEMS IN TOPOLOGICAL FIELD-THEORY [J].
DUBROVIN, B .
NUCLEAR PHYSICS B, 1992, 379 (03) :627-689
[9]   (P,Q) STRING ACTIONS [J].
GINSPARG, P ;
GOULIAN, M ;
PLESSER, MR ;
ZINNJUSTIN, J .
NUCLEAR PHYSICS B, 1990, 342 (03) :539-563
[10]   NONPERTURBATIVE 2-DIMENSIONAL QUANTUM-GRAVITY [J].
GROSS, DJ ;
MIGDAL, AA .
PHYSICAL REVIEW LETTERS, 1990, 64 (02) :127-130