Thickness Scaling Effect on Interfacial Barrier and Electrical Contact to Two-Dimensional MoS2 Layers

被引:167
作者
Li, Song-Lin [1 ,2 ]
Komatsu, Katsuyoshi [1 ]
Nakaharai, Shu [1 ]
Lin, Yen-Fu [3 ]
Yamamoto, Mahito [1 ]
Duan, Xiangfeng [4 ,5 ]
Tsukagoshi, Kazuhito [1 ]
机构
[1] Natl Inst Mat Sci, WPI Ctr Mat Nanoarchitechton, Tsukuba, Ibaraki 3050044, Japan
[2] Natl Inst Mat Sci, Int Ctr Young Scientist, Tsukuba, Ibaraki 3050044, Japan
[3] Natl Chung Hsing Univ, Dept Phys, Taichung 40227, Taiwan
[4] Univ Calif Los Angeles, California Nanosyst Inst, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[5] Univ Calif Los Angeles, California Nanosyst Inst, Los Angeles, CA 90095 USA
基金
日本学术振兴会;
关键词
two-dimensional material; chalcogenide; field-effect transistors; electrical contact; Schottky barrier; quantum confinement; MOLYBDENUM-DISULFIDE; TRANSPORT-PROPERTIES; TRANSISTORS; MONOLAYER; HETEROSTRUCTURES; NANOCRYSTALS; PERFORMANCE; GENERATION; CHEMISTRY;
D O I
10.1021/nn506138y
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Understanding the interfacial electrical properties between metallic electrodes and low-dimensional semiconductors is essential for both fundamental science and practical applications. Here we report the observation of thickness reduction induced crossover of electrical contact at Au/MoS2 interfaces. For MoS2 thicker than 5 layers, the contact resistivity slightly decreases with reducing MoS2 thickness. By contrast, the contact resistivity sharply increases with reducing MoS2 thickness below 5 layers, mainly governed by the quantum confinement effect. We find that the interfacial potential barrier can be finely tailored from 0.3 to 0.6 eV by merely varying MoS2 thickness. A full evolution diagram of energy level alignment is also drawn to elucidate the thickness scaling effect. The finding of tailoring interfacial properties with channel thickness represents a useful approach controlling the metal/semiconductor interfaces which may result in conceptually innovative functionalities.
引用
收藏
页码:12836 / 12842
页数:7
相关论文
共 39 条
[31]   Single-layer MoS2 transistors [J].
Radisavljevic, B. ;
Radenovic, A. ;
Brivio, J. ;
Giacometti, V. ;
Kis, A. .
NATURE NANOTECHNOLOGY, 2011, 6 (03) :147-150
[32]  
Roy K, 2013, NAT NANOTECHNOL, V8, P826, DOI [10.1038/NNANO.2013.206, 10.1038/nnano.2013.206]
[33]   Transport Properties of Monolayer MoS2 Grown by Chemical Vapor Deposition [J].
Schmidt, Hennrik ;
Wang, Shunfeng ;
Chu, Leiqiang ;
Toh, Minglin ;
Kumar, Rajeev ;
Zhao, Weijie ;
Neto, A. H. Castro ;
Martin, Jens ;
Adam, Shaffique ;
Oezyilmaz, Barbaros ;
Eda, Goki .
NANO LETTERS, 2014, 14 (04) :1909-1913
[34]  
Sze S.M., 2021, Physics of semiconductor devices
[35]  
Wang QH, 2012, NAT NANOTECHNOL, V7, P699, DOI [10.1038/nnano.2012.193, 10.1038/NNANO.2012.193]
[36]   The origins and limits of metal-graphene junction resistance [J].
Xia, Fengnian ;
Perebeinos, Vasili ;
Lin, Yu-ming ;
Wu, Yanqing ;
Avouris, Phaedon .
NATURE NANOTECHNOLOGY, 2011, 6 (03) :179-184
[37]   Graphene-Like Two-Dimensional Materials [J].
Xu, Mingsheng ;
Liang, Tao ;
Shi, Minmin ;
Chen, Hongzheng .
CHEMICAL REVIEWS, 2013, 113 (05) :3766-3798
[38]  
Yu WJ, 2013, NAT NANOTECHNOL, V8, P952, DOI [10.1038/nnano.2013.219, 10.1038/NNANO.2013.219]
[39]   High-Gain Phototransistors Based on a CVD MoS2 Monolayer [J].
Zhang, Wenjing ;
Huang, Jing-Kai ;
Chen, Chang-Hsiao ;
Chang, Yung-Huang ;
Cheng, Yuh-Jen ;
Li, Lain-Jong .
ADVANCED MATERIALS, 2013, 25 (25) :3456-3461