Thickness Scaling Effect on Interfacial Barrier and Electrical Contact to Two-Dimensional MoS2 Layers

被引:167
作者
Li, Song-Lin [1 ,2 ]
Komatsu, Katsuyoshi [1 ]
Nakaharai, Shu [1 ]
Lin, Yen-Fu [3 ]
Yamamoto, Mahito [1 ]
Duan, Xiangfeng [4 ,5 ]
Tsukagoshi, Kazuhito [1 ]
机构
[1] Natl Inst Mat Sci, WPI Ctr Mat Nanoarchitechton, Tsukuba, Ibaraki 3050044, Japan
[2] Natl Inst Mat Sci, Int Ctr Young Scientist, Tsukuba, Ibaraki 3050044, Japan
[3] Natl Chung Hsing Univ, Dept Phys, Taichung 40227, Taiwan
[4] Univ Calif Los Angeles, California Nanosyst Inst, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[5] Univ Calif Los Angeles, California Nanosyst Inst, Los Angeles, CA 90095 USA
基金
日本学术振兴会;
关键词
two-dimensional material; chalcogenide; field-effect transistors; electrical contact; Schottky barrier; quantum confinement; MOLYBDENUM-DISULFIDE; TRANSPORT-PROPERTIES; TRANSISTORS; MONOLAYER; HETEROSTRUCTURES; NANOCRYSTALS; PERFORMANCE; GENERATION; CHEMISTRY;
D O I
10.1021/nn506138y
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Understanding the interfacial electrical properties between metallic electrodes and low-dimensional semiconductors is essential for both fundamental science and practical applications. Here we report the observation of thickness reduction induced crossover of electrical contact at Au/MoS2 interfaces. For MoS2 thicker than 5 layers, the contact resistivity slightly decreases with reducing MoS2 thickness. By contrast, the contact resistivity sharply increases with reducing MoS2 thickness below 5 layers, mainly governed by the quantum confinement effect. We find that the interfacial potential barrier can be finely tailored from 0.3 to 0.6 eV by merely varying MoS2 thickness. A full evolution diagram of energy level alignment is also drawn to elucidate the thickness scaling effect. The finding of tailoring interfacial properties with channel thickness represents a useful approach controlling the metal/semiconductor interfaces which may result in conceptually innovative functionalities.
引用
收藏
页码:12836 / 12842
页数:7
相关论文
共 39 条
[1]   Semiconductor clusters, nanocrystals, and quantum dots [J].
Alivisatos, AP .
SCIENCE, 1996, 271 (5251) :933-937
[2]   Intrinsic Electronic Transport Properties of High-Quality Monolayer and Bilayer MoS2 [J].
Baugher, Britton W. H. ;
Churchill, Hugh O. H. ;
Yang, Yafang ;
Jarillo-Herrero, Pablo .
NANO LETTERS, 2013, 13 (09) :4212-4216
[3]   Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films [J].
Britnell, L. ;
Ribeiro, R. M. ;
Eckmann, A. ;
Jalil, R. ;
Belle, B. D. ;
Mishchenko, A. ;
Kim, Y. -J. ;
Gorbachev, R. V. ;
Georgiou, T. ;
Morozov, S. V. ;
Grigorenko, A. N. ;
Geim, A. K. ;
Casiraghi, C. ;
Castro Neto, A. H. ;
Novoselov, K. S. .
SCIENCE, 2013, 340 (6138) :1311-1314
[4]   Chemistry and properties of nanocrystals of different shapes [J].
Burda, C ;
Chen, XB ;
Narayanan, R ;
El-Sayed, MA .
CHEMICAL REVIEWS, 2005, 105 (04) :1025-1102
[5]   Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping [J].
Castellanos-Gomez, Andres ;
Buscema, Michele ;
Molenaar, Rianda ;
Singh, Vibhor ;
Janssen, Laurens ;
van der Zant, Herre S. J. ;
Steele, Gary A. .
2D MATERIALS, 2014, 1 (01)
[6]   The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors [J].
Chen, ZH ;
Appenzeller, J ;
Knoch, J ;
Lin, YM ;
Avouris, P .
NANO LETTERS, 2005, 5 (07) :1497-1502
[7]  
Chhowalla M, 2013, NAT CHEM, V5, P263, DOI [10.1038/nchem.1589, 10.1038/NCHEM.1589]
[8]   Toward Low-Power Electronics: Tunneling Phenomena in Transition Metal Dichalcogenides [J].
Das, Saptarshi ;
Prakash, Abhijith ;
Salazar, Ramon ;
Appenzeller, Joerg .
ACS NANO, 2014, 8 (02) :1681-1689
[9]   Screening and interlayer coupling in multilayer MoS2 [J].
Das, Saptarshi ;
Appenzeller, Joerg .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2013, 7 (04) :268-273
[10]   High Performance Multilayer MoS2 Transistors with Scandium Contacts [J].
Das, Saptarshi ;
Chen, Hong-Yan ;
Penumatcha, Ashish Verma ;
Appenzeller, Joerg .
NANO LETTERS, 2013, 13 (01) :100-105