Recent progress in yellow laser: Principles, status and perspectives

被引:24
作者
Cai, Yunpeng [1 ,2 ]
Ding, Jie [1 ,2 ]
Bai, Zhenxu [1 ,2 ,3 ]
Qi, Yaoyao [1 ,2 ]
Wang, Yulei [1 ,2 ]
Lu, Zhiwei [1 ,2 ]
机构
[1] Hebei Univ Technol, Ctr Adv Laser Technol, Tianjin 300401, Peoples R China
[2] Hebei Key Lab Adv Laser Technol & Equipment, Tianjin 300401, Peoples R China
[3] Macquarie Univ, MQ Photon Res Ctr, Dept Phys & Astron, Sydney, NSW 2109, Australia
基金
中国国家自然科学基金;
关键词
Yellow laser; Non-linear frequency conversion; Wavelength scalability; Conversion efficiency; SRS; ALL-SOLID-STATE; SELF-RAMAN LASER; SUM-FREQUENCY-GENERATION; 589 NM LASER; CONTINUOUS-WAVE; HIGH-POWER; FIBER-AMPLIFIER; HIGH-EFFICIENCY; 2ND-HARMONIC GENERATION; INTRACAVITY RAMAN;
D O I
10.1016/j.optlastec.2022.108113
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Yellow lasers have always attracted much attention in the fields of biomedicine, lidar, adaptive optics and nano guide stars. Different application scenarios also have differences in the selection of yellow light wavelengths and various indicators. For example, the Coarse Star and Nano-guide technologies require a narrow yellow light linewidth of 589 nm. According to the generation method, it can be divided into dye excitation, semiconductor excitation and nonlinear frequency conversion excitation. Non-linear frequency conversion technology can be divided into sum frequency generation (SFG), second harmonic generation (SHG), optical parametric oscillation (OPO) and stimulated Raman scattering (SRS). Among them, SRS has become a current research hotspot due to its high beam quality, high wavelength scalability and high conversion efficiency. The development and research status of non-linear frequency conversion technology are expatiated in this article, which is useful reference for the future in this field.
引用
收藏
页数:13
相关论文
共 124 条
[81]   Yellow and Orange Light Selectable Output Generated by Nd:YAP/YVO4/LBO Raman Laser [J].
Mao, Tingwei ;
Duan, Yanmin ;
Chen, Simeng ;
Chen, Mengyao ;
Zhang, Ximei ;
Zhou, Qingqing ;
Zhu, Haiyong .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2019, 31 (13) :1112-1115
[82]   Discretely tunable, all-solid-state laser in the green, yellow, and red [J].
Mildren, RP ;
Pask, HM ;
Ogilvy, H ;
Piper, JA .
OPTICS LETTERS, 2005, 30 (12) :1500-1502
[83]   Efficient, all-solid-state, Raman laser in the yellow, orange and red [J].
Mildren, RP ;
Convery, M ;
Pask, HM ;
Piper, JA ;
Mckay, T .
OPTICS EXPRESS, 2004, 12 (05) :785-790
[84]   Efficient 1181 nm self-stimulating Raman output from transversely diode-pumped Nd3+:KGd(WO4)2 laser [J].
Omatsu, T ;
Ojima, Y ;
Pask, HM ;
Piper, JA ;
Dekker, P .
OPTICS COMMUNICATIONS, 2004, 232 (1-6) :327-331
[85]  
Pennington D M, 2004, COMPACT FIBER LASER
[86]   All-solid-state, tunable, single-frequency source of yellow light for high-resolution spectroscopy [J].
Petelski, T ;
Conroy, RS ;
Bencheikh, K ;
Mlynek, J ;
Schiller, S .
OPTICS LETTERS, 2001, 26 (13) :1013-1015
[87]  
Qi Y., 2015, ADV LASER TECHNOL AP, V9671, P202
[88]   3-WAVELENGTH INTERCONVERSION LASER [J].
SCHULZ, PA ;
JEYS, TH .
OPTICS LETTERS, 1993, 18 (19) :1630-1632
[89]   Intracavity frequency-doubled Nd:YAG/KLu(WO4)2 Raman laser at 589 nm: A potential source for sodium D2 resonance radiation [J].
Shen, Hongbin ;
Wang, Qingpu ;
Zhang, Xingyu ;
Chen, Xiaohan ;
Cong, Zhenhua ;
Bai, Fen ;
Gao, Liang ;
Lan, Weixia .
OPTICS AND LASER TECHNOLOGY, 2013, 45 :142-146
[90]   A single-frequency intracavity Raman laser [J].
Sheng, Quan ;
Li, Ran ;
Lee, Andrew J. ;
Spence, David J. ;
Pask, Helen M. .
OPTICS EXPRESS, 2019, 27 (06) :8540-8551