Recent progress in yellow laser: Principles, status and perspectives

被引:24
作者
Cai, Yunpeng [1 ,2 ]
Ding, Jie [1 ,2 ]
Bai, Zhenxu [1 ,2 ,3 ]
Qi, Yaoyao [1 ,2 ]
Wang, Yulei [1 ,2 ]
Lu, Zhiwei [1 ,2 ]
机构
[1] Hebei Univ Technol, Ctr Adv Laser Technol, Tianjin 300401, Peoples R China
[2] Hebei Key Lab Adv Laser Technol & Equipment, Tianjin 300401, Peoples R China
[3] Macquarie Univ, MQ Photon Res Ctr, Dept Phys & Astron, Sydney, NSW 2109, Australia
基金
中国国家自然科学基金;
关键词
Yellow laser; Non-linear frequency conversion; Wavelength scalability; Conversion efficiency; SRS; ALL-SOLID-STATE; SELF-RAMAN LASER; SUM-FREQUENCY-GENERATION; 589 NM LASER; CONTINUOUS-WAVE; HIGH-POWER; FIBER-AMPLIFIER; HIGH-EFFICIENCY; 2ND-HARMONIC GENERATION; INTRACAVITY RAMAN;
D O I
10.1016/j.optlastec.2022.108113
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Yellow lasers have always attracted much attention in the fields of biomedicine, lidar, adaptive optics and nano guide stars. Different application scenarios also have differences in the selection of yellow light wavelengths and various indicators. For example, the Coarse Star and Nano-guide technologies require a narrow yellow light linewidth of 589 nm. According to the generation method, it can be divided into dye excitation, semiconductor excitation and nonlinear frequency conversion excitation. Non-linear frequency conversion technology can be divided into sum frequency generation (SFG), second harmonic generation (SHG), optical parametric oscillation (OPO) and stimulated Raman scattering (SRS). Among them, SRS has become a current research hotspot due to its high beam quality, high wavelength scalability and high conversion efficiency. The development and research status of non-linear frequency conversion technology are expatiated in this article, which is useful reference for the future in this field.
引用
收藏
页数:13
相关论文
共 124 条
[71]   Self-frequency-doubled KTiOAsO4 Raman laser emitting at 573 nm [J].
Liu, Zhaojun ;
Wang, Qingpu ;
Zhang, Xingyu ;
Zhang, Sasa ;
Chang, Jun ;
Fan, Shuzhen ;
Sun, Wenjia ;
Jin, Guofan ;
Tao, Xutang ;
Sun, Youxuan ;
Zhang, Shaojun ;
Liu, Zejin .
OPTICS LETTERS, 2009, 34 (14) :2183-2185
[72]  
Lu XY, 2020, OPTICA, V7, P1417, DOI [10.1364/OPTICA.393810, 10.1364/optica.393810]
[73]  
Lu Y., 2015, INT SOC OPT PHOTONIC, V9650, P32
[74]  
Lu YF, 2010, LASER PHYS LETT, V7, P634, DOI 10.1002/lapl.201010042
[75]   208 W all-solid-state sodium guide star laser operated at modulated-longitudinal mode [J].
Lu, Yanhua ;
Zhang, Lei ;
Xu, Xiafei ;
Ren, Huaijin ;
Chen, Xiaoming ;
Wei, Xingbin ;
Wei, Bin ;
Liao, Yuan ;
Gu, Jingliang ;
Liu, Fang ;
Xu, Liu ;
Wang, Juntao ;
Chen, Tianjiang ;
Wan, Min ;
Zhang, Wei ;
Tang, Chun ;
Fan, Guobin .
OPTICS EXPRESS, 2019, 27 (15) :20282-20289
[76]   Generation of tunable and narrow linewidth continuous-wave yellow laser by sum-frequency mixing of diode-pumped solid-state Nd:YAG ring lasers [J].
Lu, Yuan-Fu ;
Xie, Shi-Yong ;
Bo, Yong ;
Zhang, Xiao-Fu ;
Cui, Qian-Jin ;
Zhou, Yong ;
Zong, Nan ;
Yang, Feng ;
Peng, Qin-Jun ;
Cui, Da-Fu ;
Xu, Zu-Yan .
OPTICS COMMUNICATIONS, 2009, 282 (17) :3573-3576
[77]   Efficient CW laser at 559 nm by intracavity sum-frequency mixing in a self-Raman Nd:YVO4 laser under direct 880 nm diode laser pumping [J].
Lue, Y. F. ;
Cheng, W. B. ;
Xiong, Z. ;
Lu, J. ;
Xu, L. J. ;
Sun, G. C. ;
Zhao, Z. M. .
LASER PHYSICS LETTERS, 2010, 7 (11) :787-789
[78]   CW light sources at the 589 nm sodium D2 line by sum-frequency mixing of diode pumped neodymium lasers [J].
Lue, Y. F. ;
Lu, J. ;
Xu, L. J. ;
Sun, G. C. ;
Zhao, Z. M. ;
Gao, X. ;
Lin, J. Q. .
LASER PHYSICS LETTERS, 2010, 7 (10) :719-721
[79]  
Lü YF, 2010, OPT LETT, V35, P2964, DOI 10.1364/OL.35.002964
[80]   Continuous-wave yellow laser generation at 578 nm by intracavity sum-frequency mixing of thin disk Yb:YAG laser and Nd:YAG laser [J].
Ma, Gangfei ;
Yang, Jianming ;
Tan, Huiming ;
Tian, Yubing ;
Yao, Wenming ;
Ju, Qiaojun ;
Zhang, Long ;
Chen, Jiansheng ;
Wu, Xiaodong ;
Gao, Jing .
OPTICS AND LASER TECHNOLOGY, 2017, 92 :32-35