Recent progress in yellow laser: Principles, status and perspectives

被引:24
作者
Cai, Yunpeng [1 ,2 ]
Ding, Jie [1 ,2 ]
Bai, Zhenxu [1 ,2 ,3 ]
Qi, Yaoyao [1 ,2 ]
Wang, Yulei [1 ,2 ]
Lu, Zhiwei [1 ,2 ]
机构
[1] Hebei Univ Technol, Ctr Adv Laser Technol, Tianjin 300401, Peoples R China
[2] Hebei Key Lab Adv Laser Technol & Equipment, Tianjin 300401, Peoples R China
[3] Macquarie Univ, MQ Photon Res Ctr, Dept Phys & Astron, Sydney, NSW 2109, Australia
基金
中国国家自然科学基金;
关键词
Yellow laser; Non-linear frequency conversion; Wavelength scalability; Conversion efficiency; SRS; ALL-SOLID-STATE; SELF-RAMAN LASER; SUM-FREQUENCY-GENERATION; 589 NM LASER; CONTINUOUS-WAVE; HIGH-POWER; FIBER-AMPLIFIER; HIGH-EFFICIENCY; 2ND-HARMONIC GENERATION; INTRACAVITY RAMAN;
D O I
10.1016/j.optlastec.2022.108113
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Yellow lasers have always attracted much attention in the fields of biomedicine, lidar, adaptive optics and nano guide stars. Different application scenarios also have differences in the selection of yellow light wavelengths and various indicators. For example, the Coarse Star and Nano-guide technologies require a narrow yellow light linewidth of 589 nm. According to the generation method, it can be divided into dye excitation, semiconductor excitation and nonlinear frequency conversion excitation. Non-linear frequency conversion technology can be divided into sum frequency generation (SFG), second harmonic generation (SHG), optical parametric oscillation (OPO) and stimulated Raman scattering (SRS). Among them, SRS has become a current research hotspot due to its high beam quality, high wavelength scalability and high conversion efficiency. The development and research status of non-linear frequency conversion technology are expatiated in this article, which is useful reference for the future in this field.
引用
收藏
页数:13
相关论文
共 124 条
  • [61] Li J.H., 2013, LASER PHYS LETT, V10, P2409
  • [62] Li S.X., 2018, INT SOC OPT PHOTO, V10511
  • [63] Diode-side-pumped intracavity frequency-doubled Nd:: YAG/BaWO4 Raman laser generating average output power of 3.14 W at 590 nm
    Li, Shutao
    Zhang, Xingyu
    Wang, Qingpu
    Zhang, Xiaolei
    Cong, Zhenhua
    Zhang, Huaijin
    Wang, Jiyang
    [J]. OPTICS LETTERS, 2007, 32 (20) : 2951 - 2953
  • [64] Efficient, miniature, cw yellow source based on an intracavity frequency-doubled Nd:YVO4 self-Raman laser
    Li, Xiaoli
    Lee, Andrew J.
    Pask, Helen M.
    Piper, James A.
    Huo, Yujing
    [J]. OPTICS LETTERS, 2011, 36 (08) : 1428 - 1430
  • [65] Li Y., HIGH POWER LASER SCI, V9
  • [66] Diode-pumped continuous wave self-sum-frequency mixing yellow Nd:YAB laser at 592 nm
    Li, Y. L.
    Jiang, H. L.
    Ni, T. Y.
    Zhang, T. Y.
    Tao, Z. H.
    Zeng, Y. H.
    [J]. LASER PHYSICS LETTERS, 2011, 8 (04) : 274 - 276
  • [67] 3.62 W of continuous-wave orange-yellow light generated by intra-cavity sum-frequency mixing of Nd:YVO4
    Li, Yong-Liang
    Dong, Yuan
    Lue, Yan-Fei
    [J]. OPTIK, 2011, 122 (13): : 1125 - 1127
  • [68] All-solid-state Nd:YAG-LBO yellow laser at 572 nm
    Liang, W.
    Sun, G. C.
    Yu, X.
    Li, B. Z.
    Jin, G. Y.
    [J]. LASER PHYSICS, 2011, 21 (06) : 1067 - 1070
  • [69] Continuous-wave VECSEL Raman laser with tunable lime-yellow-orange output
    Lin, Jipeng
    Pask, Helen M.
    Spence, David J.
    Hamilton, Craig J.
    Malcolm, Graeme P. A.
    [J]. OPTICS EXPRESS, 2012, 20 (05): : 5219 - 5224
  • [70] Quasi-continuous-wave 589-nm radiation based on intracavity frequency-doubled Nd:GGG/BaWO4 Raman laser
    Liu, Yang
    Liu, Zhaojun
    Cong, Zhenhua
    Men, Shaojie
    Rao, Han
    Xia, Jinbao
    Zhang, Sasa
    Zhang, Huaijin
    [J]. OPTICS AND LASER TECHNOLOGY, 2016, 81 : 184 - 188