An end-to-end brain tumor segmentation system using multi-inception-UNET

被引:29
作者
Latif, Urva [1 ,2 ]
Shahid, Ahmad R. [1 ,2 ]
Raza, Basit [1 ,2 ]
Ziauddin, Sheikh [3 ]
Khan, Muazzam A. [4 ]
机构
[1] Natl Ctr Artificial Intelligence, Med Imaging & Diagnost Lab, Islamabad, Pakistan
[2] COMSATS Univ Islamabad CUI, Dept Comp Sci, Islamabad, Pakistan
[3] Queens Univ, Dept Elect & Comp Engn, Kingston, ON, Canada
[4] Quaid I Azam Univ, Dept Comp Sci, Islamabad, Pakistan
关键词
brain tumor; BRATS; CNN; inception; UNET; CONVOLUTIONAL NEURAL-NETWORKS;
D O I
10.1002/ima.22585
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Accurate detection and pixel-wise classification of brain tumors in Magnetic Resonance Imaging (MRI) scans are vital for their diagnosis, prognosis study and treatment planning. Manual segmentation of tumors from MRI is highly subjective and tedious. With recent advances in deep learning, automatic brain tumor segmentation is an emerging research direction in the medical imaging domain. We present a study to improve the automatic segmentation process by introducing size variability in the Convolutional Neural Network (CNN). For pixel-wise classification of tumorous slices convolutional neural network-based encoder-decoder UNET model is referred. A multi-inception-UNET model is proposed to improve scalability of the UNET model. Extensive experiments have been performed using the Brain Tumor Segmentation Challenge (BRATS) datasets to establish the validity of our proposed model. Experimental results show that our proposed method achieved the best results on BraTS 2015, 2017 and 2019 datasets for complete tumor, core tumor and enhancing tumor regions respectively.
引用
收藏
页码:1803 / 1816
页数:14
相关论文
共 52 条
[1]   Big data analysis for brain tumor detection: Deep convolutional neural networks [J].
Amin, Javeria ;
Sharif, Muhammad ;
Yasmin, Mussarat ;
Fernandes, Steven Lawrence .
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2018, 87 :290-297
[2]  
[Anonymous], 2017, COMPUTER SCI
[3]  
Bakas S., 2018, arXiv
[4]   Data Descriptor: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features [J].
Bakas, Spyridon ;
Akbari, Hamed ;
Sotiras, Aristeidis ;
Bilello, Michel ;
Rozycki, Martin ;
Kirby, Justin S. ;
Freymann, John B. ;
Farahani, Keyvan ;
Davatzikos, Christos .
SCIENTIFIC DATA, 2017, 4
[5]   Inception Modules Enhance Brain Tumor Segmentation [J].
Cahall, Daniel E. ;
Rasool, Ghulam ;
Bouaynaya, Nidhal C. ;
Fathallah-Shaykh, Hassan M. .
FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2019, 13
[6]   Prediction of survival with multi-scale radiomic analysis in glioblastoma patients [J].
Chaddad, Ahmad ;
Sabri, Siham ;
Niazi, Tamim ;
Abdulkarim, Bassam .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2018, 56 (12) :2287-2300
[7]   MRI Tumor Segmentation with Densely Connected 3D CNN [J].
Chen, Lele ;
Wu, Yue ;
DSouza, Adora M. ;
Abidin, Anas Z. ;
Wismueller, Axel ;
Xu, Chenliang .
MEDICAL IMAGING 2018: IMAGE PROCESSING, 2018, 10574
[8]   DRINet for Medical Image Segmentation [J].
Chen, Liang ;
Bentley, Paul ;
Mori, Kensaku ;
Misawa, Kazunari ;
Fujiwara, Michitaka ;
Rueckert, Daniel .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) :2453-2462
[9]  
Chen X., 2018, P INT C LEARN REPR
[10]   Generalised Wasserstein Dice Score for Imbalanced Multi-class Segmentation Using Holistic Convolutional Networks [J].
Fidon, Lucas ;
Li, Wenqi ;
Garcia-Peraza-Herrera, Luis C. ;
Ekanayake, Jinendra ;
Kitchen, Neil ;
Ourselin, Sebastien ;
Vercauteren, Tom .
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2017, 2018, 10670 :64-76