Voltage fade mitigation in the cationic dominant lithium-rich NCM cathode

被引:18
作者
Chandan, Prem [1 ]
Chang, Chung-Chieh [2 ]
Yeh, Kuo-Wei [2 ]
Chiu, Chui-Chang [2 ]
Wu, Dong-Ze [1 ]
Huang, Tzu-Wen [1 ]
Wu, Phillip M. [1 ]
Chi, Po-Wei [1 ]
Hsu, Wei-Fan [1 ]
Su, Kai-Han [3 ]
Lee, Yu-Wen [4 ]
Chang, Hua-Shu [1 ]
Wang, Ming-Jye [5 ]
Wu, Heng-Liang [4 ]
Tang, Horng-Yi [6 ]
Wu, Maw-Kuen [1 ]
机构
[1] Acad Sinica, Inst Phys, Taipei 11529, Taiwan
[2] Gus Technol Co Ltd, New Taipei City 22175, Taiwan
[3] Natl Taipei Univ Technol, Inst Mechatron Engn, Taipei 10608, Taiwan
[4] Natl Taiwan Univ, Ctr Condensed Matter Sci, Taipei 10617, Taiwan
[5] Acad Sinica, Inst Astron & Astrophys, Taipei 11529, Taiwan
[6] Natl Chi Nan Univ, Dept Appl Chem, Puli 545, Taiwan
关键词
ANIONIC REDOX; CYCLING PERFORMANCE; ION; NI; MN; ELECTRODES; CAPACITY;
D O I
10.1038/s42004-019-0223-3
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In the archetypal lithium-rich cathode compound Li1.2Ni0.13Co0.13Mn0.54O2, a major part of the capacity is contributed from the anionic (O2(-/-)) reversible redox couple and is accompanied by the transition metal ions migration with a detrimental voltage fade. A better understanding of these mutual interactions demands for a new model that helps to unfold the occurrences of voltage fade in lithium-rich system. Here we present an alternative approach, a cationic reaction dominated lithium-rich material Li1.083Ni0.333Co0.083Mn0.5O2, with reduced lithium content to modify the initial band structure, hence similar to 80% and similar to 20% of capacity are contributed by cationic and anionic redox couples, individually. A 400 cycle test with 85% capacity retention depicts the capacity loss mainly arises from the metal ions dissolution. The voltage fade usually from Mn4+/Mn3+ and/or On-/O2- reduction at around 2.5/3.0 V seen in the typical lithium-rich materials is completely eliminated in the cationic dominated cathode material.
引用
收藏
页数:7
相关论文
共 36 条
[1]   The Effect of Cation Disorder on the Average Li Intercalation Voltage of Transition-Metal Oxides [J].
Abdellahi, Aziz ;
Urban, Alexander ;
Dacek, Stephen ;
Ceder, Gerbrand .
CHEMISTRY OF MATERIALS, 2016, 28 (11) :3659-3665
[2]   Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2 [J].
Armstrong, A. Robert ;
Holzapfel, Michael ;
Novak, Petr ;
Johnson, Christopher S. ;
Kang, Sun-Ho ;
Thackeray, Michael M. ;
Bruce, Peter G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (26) :8694-8698
[3]   Direct Quantification of Anionic Redox over Long Cycling of Li-Rich NMC via Hard X-ray Photoemission Spectroscopy [J].
Assat, Gaurav ;
Iadecola, Antonella ;
Foix, Dominique ;
Dedryvere, Remi ;
Tarascon, Jean-Marie .
ACS ENERGY LETTERS, 2018, 3 (11) :2721-2728
[4]   Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries [J].
Assat, Gaurav ;
Tarascon, Jean-Marie .
NATURE ENERGY, 2018, 3 (05) :373-386
[5]   Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes [J].
Assat, Gaurav ;
Foix, Dominique ;
Delacourt, Charles ;
Iadecola, Antonella ;
Dedryvere, Remi ;
Tarascon, Jean-Marie .
NATURE COMMUNICATIONS, 2017, 8
[6]   A high rate Li-rich layered MNC cathode material for lithium-ion batteries [J].
Ates, Mehmet Nurullah ;
Mukerjee, Sanjeev ;
Abraham, K. M. .
RSC ADVANCES, 2015, 5 (35) :27375-27386
[7]   First-Cycle Simulation for Li-Rich Layered Oxide Cathode Material xLi2MnO3•(1-x)LiMO2 (x=0.4) [J].
Benedek, Roy .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (11) :A2667-A2674
[8]   Combinatorial Study of the Li-Ni-Mn-Co Oxide Pseudoquaternary System for Use in Li-Ion Battery Materials Research [J].
Brown, Colby R. ;
McCalla, Eric ;
Watson, Cody ;
Dahn, J. R. .
ACS COMBINATORIAL SCIENCE, 2015, 17 (06) :381-391
[9]   Examining Hysteresis in Composite xLi2MnO3•(1-x)LiMO2 Cathode Structures [J].
Croy, Jason R. ;
Gallagher, Kevin G. ;
Balasubramanian, Mahalingam ;
Chen, Zonghai ;
Ren, Yang ;
Kim, Donghan ;
Kang, Sun-Ho ;
Dees, Dennis W. ;
Thackeray, Michael M. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (13) :6525-6536
[10]   BATTERY MATERIALS Operating through oxygen [J].
Delmas, Claude .
NATURE CHEMISTRY, 2016, 8 (07) :641-643