Structural evolution of NASICON-type Li1+xAlxGe2-x(PO4)3 using in situ synchrotron X-ray powder diffraction

被引:81
作者
Safanama, Dorsasadat [1 ]
Sharma, Neeraj [2 ]
Rao, Rayavarapu Prasada [1 ]
Brand, Helen E. A. [3 ]
Adams, Stefan [1 ]
机构
[1] Natl Univ Singapore, Dept Mat Sci & Engn, Singapore 17579, Singapore
[2] Univ New S Wales, Sch Chem, Sydney, NSW 2052, Australia
[3] Australian Synchrotron, Clayton, Vic 3168, Australia
基金
澳大利亚研究理事会; 新加坡国家研究基金会;
关键词
ARGYRODITE SOLID ELECTROLYTES; SUPERIONIC CONDUCTIVITY; NEUTRON-DIFFRACTION; LITHIUM MOBILITY; PHASE-TRANSITION; GLASS-CERAMICS; AIR BATTERY; PERFORMANCE; LI1+XTI2-XALX(PO4)(3); LI7LA3ZR2O12;
D O I
10.1039/c6ta00402d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Fast Li-ion conducting Li1+xAlxGe2-x(PO4)(3) or LAGP ceramics are the most commonly used anode-protecting membranes in new generation Li-air batteries. The electrochemical properties of this solid membrane (electrolyte) are highly dependent on the purity of the phase and the actual amount of Al incorporated into the structure which often deviates from the synthetic inputs for different annealing conditions. Hence, optimizing the annealing temperature range is of great importance to achieve desirable phases and therefore optimized properties. Here in situ synchrotron X-ray diffraction is carried out during the synthesis of LAGP. Starting with ball-milled and calcined LAGP glass powders we observe the structural evolution during the glass to ceramic transition. Sequential Rietveld refinements show that the dominant Al-poor LGP phase transforms into an Al-incorporated LAGP structure at temperatures higher than 800 degrees C. The c lattice parameter is found to be highly dependent on the temperature and also the amount of Al incorporated into the structure. The relationship between the c lattice parameter and Al concentration in LAGP is evaluated and the correlation can be used to allow the estimation of Al doping. Thus this work allows the lattice parameter to "fingerprint" the dopant concentration.
引用
收藏
页码:7718 / 7726
页数:9
相关论文
共 43 条
[1]   On the structure of Li3Ti2(PO4)3 [J].
Aatiq, A ;
Ménétrier, M ;
Croguennec, L ;
Suard, E ;
Delmas, C .
JOURNAL OF MATERIALS CHEMISTRY, 2002, 12 (10) :2971-2978
[2]   A New Approach to Develop Safe All-Inorganic Monolithic Li-Ion Batteries [J].
Aboulaich, Abelmaula ;
Bouchet, Renaud ;
Delaizir, Gaelle ;
Seznec, Vincent ;
Tortet, Laurence ;
Morcrette, Mathieu ;
Rozier, Patrick ;
Tarascon, Jean-Marie ;
Viallet, Virginie ;
Dolle, Mickael .
ADVANCED ENERGY MATERIALS, 2011, 1 (02) :179-183
[3]   Structural requirements for fast lithium ion migration in Li10GeP2S12 [J].
Adams, Stefan ;
Rao, R. Prasada .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (16) :7687-7691
[4]   Ion transport and phase transition in Li7-xLa3(Zr2-xMx)O12 (M = Ta5+, Nb5+, x=0, 0.25) [J].
Adams, Stefan ;
Rao, Rayavarapu Prasada .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (04) :1426-1434
[5]   STRUCTURE AND THERMAL-EXPANSION OF LIGE2 (PO4)3 [J].
ALAMI, M ;
BROCHU, R ;
SOUBEYROUX, JL ;
GRAVEREAU, P ;
LEFLEM, G ;
HAGENMULLER, P .
JOURNAL OF SOLID STATE CHEMISTRY, 1991, 90 (02) :185-193
[6]   Lithium mobility in titanium based Nasicon Li1+xTi2-xAlx(PO4)3 and LiTi2-xZrx(PO4)3 materials followed by NMR and impedance spectroscopy [J].
Arbi, K. ;
Rojo, J. M. ;
Sanz, J. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2007, 27 (13-15) :4215-4218
[7]   On the influence of the cation vacancy on lithium conductivity of Li1 + xRxTi2- x(PO4)3 Nasicon type materials [J].
Arbi, K. ;
Jimenez, R. ;
Salkus, T. ;
Orliukas, A. F. ;
Sanz, J. .
SOLID STATE IONICS, 2015, 271 :28-33
[8]   High lithium ion conducting solid electrolytes based on NASICON Li1+xAlxM2-x(PO4)3 materials (M = Ti, Ge and 0 ≤ x ≤ 0.5) [J].
Arbi, K. ;
Bucheli, W. ;
Jimenez, R. ;
Sanz, J. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2015, 35 (05) :1477-1484
[9]   Structural Factors That Enhance Lithium Mobility in Fast-Ion Li1+xTi2-xAlx(PO4)3 (0 ≤ x ≤ 0.4) Conductors Investigated by Neutron Diffraction in the Temperature Range 100-500 K [J].
Arbi, K. ;
Hoelzel, M. ;
Kuhn, A. ;
Garcia-Alvarado, F. ;
Sanz, J. .
INORGANIC CHEMISTRY, 2013, 52 (16) :9290-9296
[10]  
Averbuch-Pouchot M., 1996, TOPICS PHOSPHATE CHE