Quasi-alternating links and Q-polynomials

被引:10
作者
Teragaito, Masakazu [1 ]
机构
[1] Hiroshima Univ, Dept Math Educ, Higashihiroshima 7398524, Japan
基金
日本学术振兴会;
关键词
Quasi-alternating link; Q-polynomial; determinant; alternating link; SURGERY; TORSION; KNOTS;
D O I
10.1142/S0218216514500680
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Qazaqzeh and Chbili showed that for any quasi-alternating link, the degree of the Q-polynomial is less than its determinant. We give a refinement of their evaluation.
引用
收藏
页数:6
相关论文
共 20 条
[1]   Torsion numbers of alternating bends [J].
Bankwitz, C .
MATHEMATISCHE ANNALEN, 1930, 103 :145-161
[2]   A POLYNOMIAL INVARIANT FOR UNORIENTED KNOTS AND LINKS [J].
BRANDT, RD ;
LICKORISH, WBR ;
MILLETT, KC .
INVENTIONES MATHEMATICAE, 1986, 84 (03) :563-573
[3]  
Cha J.C., KNOTINFO TABLE KNOT
[4]   TWISTING QUASI-ALTERNATING LINKS [J].
Champanerkar, Abhijit ;
Kofman, Ilya .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (07) :2451-2458
[5]  
Crowell RH., 1959, Illinois J. Math, V3, P101, DOI [10.1215/ijm/1255455002, DOI 10.1215/IJM/1255455002]
[6]  
Greene J, 2010, MATH RES LETT, V17, P39
[7]   Turaev torsion, definite 4-manifolds, and quasi-alternating knots [J].
Greene, Joshua Evan ;
Watson, Liam .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2013, 45 :962-972
[8]  
Ho C. F., 1985, AMS ABSTR, V6, P300
[9]  
HODGSON C, 1985, LECT NOTES MATH, V1144, P60
[10]  
Jablan S., 2014, ARXIV14044965