A Whittaker-Shannon-Kotel'nikov sampling theorem related to the Dunkl transform

被引:23
作者
Ciaurri, Oscar [1 ]
Varona, Juan L. [1 ]
机构
[1] Univ La Rioja, Dept Matemat & Computac, Logrono 26004, Spain
关键词
WSK sampling theorem; reproducing kernel; Dunkl transform; orthonormal system; Bessel functions;
D O I
10.1090/S0002-9939-07-08831-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Whittaker-Shannon-Kotel'nikov sampling theorem related to the Dunkl transformon the real line is proved. To this end we state, in terms of Bessel functions, an orthonormal system which is complete in L-2((-1, 1), vertical bar x vertical bar (2 alpha+1) dx). This orthonormal system is a generalization of the classical exponential system de. ning Fourier series.
引用
收藏
页码:2939 / 2947
页数:9
相关论文
共 18 条
[2]  
Andersen NB, 2005, INT MATH RES NOTICES, V2005, P1817
[3]  
BETANCOR J, IN PRESS J FUNCT ANA
[4]   Mean and almost everywhere convergence of Fourier-Neumann series [J].
Ciaurri, O ;
Guadalupe, JJ ;
Pérez, M ;
Varona, JL .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 236 (01) :125-147
[5]   THE DUNKL TRANSFORM [J].
DEJEU, MFE .
INVENTIONES MATHEMATICAE, 1993, 113 (01) :147-162
[7]   INTEGRAL-KERNELS WITH REFLECTION GROUP INVARIANCE [J].
DUNKL, CF .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1991, 43 (06) :1213-1227
[8]   Orthogonal sampling formulas: A unified approach [J].
Garcia, AG .
SIAM REVIEW, 2000, 42 (03) :499-512
[9]  
HIGGINS JR, 1972, J LOND MATH SOC, V5, P707
[10]   A q-analogue of the Whittaker-Shannon-Kotelnikov sampling theorem [J].
Ismail, ME ;
Zayed, AI .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (12) :3711-3719