Turing patterns and Newell-Whitehead-Segel amplitude equation

被引:2
|
作者
Zemskov, E. P. [1 ]
机构
[1] Russian Acad Sci, Dorodnitsyn Comp Ctr, Dept Continuous Mech, Moscow 119333, Russia
基金
俄罗斯基础研究基金会;
关键词
CONVECTION;
D O I
10.3367/UFNe.0184.201410j.1149
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Two-dimensional (2D) reaction diffusion type systems with linear and nonlinear diffusion terms are examined for their behavior when a Turing instability emerges and stationary spatial patterns form. It is shown that a 2D nonlinear analysis for striped patterns leads to the Newell-Whitehead-Segel amplitude equation in which the contribution from spatial derivatives depends only on the linearized diffusion term of the original model. In the absence of this contribution, i.e., for the normal forms, standard methods are used to calculate the coefficients of the equation.
引用
收藏
页码:1035 / 1037
页数:3
相关论文
共 50 条
  • [1] KINK SOLUTIONS FOR THE NEWELL-WHITEHEAD-SEGEL EQUATION
    Knyazev, M. A.
    JOURNAL OF PHYSICAL STUDIES, 2019, 23 (03):
  • [2] On solutions of the Newell-Whitehead-Segel equation and Zeldovich equation
    Rehman, Hamood Ur
    Imran, Muhammad Asjad
    Ullah, Naeem
    Akgul, Ali
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (08) : 7134 - 7149
  • [3] NUMERICAL TREATMENT OF NEWELL-WHITEHEAD-SEGEL EQUATION
    Gupta, S.
    Goyal, M.
    Prakash, A.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2020, 10 (02): : 312 - 320
  • [4] A Differential Harnack Inequality for the Newell-Whitehead-Segel Equation
    Derek Booth
    Jack Burkart
    Xiaodong Cao
    Max Hallgren
    Zachary Munro
    Jason Snyder
    Tom Stone
    AnalysisinTheoryandApplications, 2019, 35 (02) : 192 - 204
  • [5] Stability and grain boundaries in the dispersive Newell-Whitehead-Segel equation
    Malomed, BA
    PHYSICA SCRIPTA, 1998, 57 (01): : 115 - 117
  • [6] Chebyshev collocation method for fractional Newell-Whitehead-Segel equation
    Gebril, E.
    El-Azab, M. S.
    Sameeh, M.
    ALEXANDRIA ENGINEERING JOURNAL, 2024, 87 : 39 - 46
  • [8] Numerical Method for Fractional Model of Newell-Whitehead-Segel Equation
    Prakash, Amit
    Verma, Vijay
    FRONTIERS IN PHYSICS, 2019, 7 (FEB):
  • [9] Exponential finite difference methods for solving Newell-Whitehead-Segel equation
    Hilal, Nayrouz
    Injrou, Sami
    Karroum, Ramez
    ARABIAN JOURNAL OF MATHEMATICS, 2020, 9 (02) : 367 - 379
  • [10] A new study on the Newell-Whitehead-Segel equation with CaputoFabrizio fractional derivative
    Alkan, Asli
    Anac, Halil
    AIMS MATHEMATICS, 2024, 9 (10): : 27979 - 27997