Lyapunov instability and finite size effects in a system with long-range forces

被引:156
作者
Latora, V [1 ]
Rapisarda, A
Ruffo, S
机构
[1] MIT, Ctr Theoret Phys, Nucl Sci Lab, Cambridge, MA 02139 USA
[2] MIT, Dept Phys, Cambridge, MA 02139 USA
[3] Ist Nazl Fis Nucl, I-95129 Catania, Italy
[4] Univ Catania, Dipartmento Fis, I-95129 Catania, Italy
[5] Ctr Int Ciencias, Cuernavaca, Morelos, Mexico
[6] Univ Florence, Dipartimento Energet, I-50139 Florence, Italy
[7] Ist Nazl Fis Nucl, Florence, Italy
关键词
D O I
10.1103/PhysRevLett.80.692
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the largest Lyapunov exponent A and the finite size effects of a system of N fully coupled classical particles, which shows a second order phase transition. Slightly below the critical energy density U-c, lambda shows a peak which persists for very large N values (N = 20 000). We show, both numerically and analytically, that chaoticity is strongly related to kinetic energy fluctuations. In the limit of small energy, lambda goes to zero with an N-independent power law: lambda similar to root U. In the continuum limit the system is integrable in the whole high temperature phase. More precisely, the behavior lambda similar to N-1/3 is found numerically for U > U-c and justified on the basis of a random matrix approximation. [S0031-9007(97)05121-1].
引用
收藏
页码:692 / 695
页数:4
相关论文
共 31 条
[1]   CLUSTERING AND RELAXATION IN HAMILTONIAN LONG-RANGE DYNAMICS [J].
ANTONI, M ;
RUFFO, S .
PHYSICAL REVIEW E, 1995, 52 (03) :2361-2374
[2]  
ANTONI M, IN PRESS
[3]   Chaos vs linear instability in the Vlasov equation: A fractal analysis characterization [J].
Atalmi, A ;
Baldo, M ;
Burgio, GF ;
Rapisarda, A .
PHYSICAL REVIEW C, 1996, 53 (05) :2556-2559
[4]   KOLMOGOROV ENTROPY AND NUMERICAL EXPERIMENTS [J].
BENETTIN, G ;
GALGANI, L ;
STRELCYN, JM .
PHYSICAL REVIEW A, 1976, 14 (06) :2338-2345
[5]   UNIVERSAL BEHAVIOR OF LYAPUNOV EXPONENTS IN UNSTABLE SYSTEMS [J].
BONASERA, A ;
LATORA, V ;
RAPISARDA, A .
PHYSICAL REVIEW LETTERS, 1995, 75 (19) :3434-3437
[6]  
BONASERA A, P9621
[7]   PHASE-TRANSITIONS AND LYAPUNOV CHARACTERISTIC EXPONENTS [J].
BUTERA, P ;
CARAVATI, G .
PHYSICAL REVIEW A, 1987, 36 (02) :962-964
[8]   Geometry of dynamics, Lyapunov exponents, and phase transitions [J].
Caiani, L ;
Casetti, L ;
Clementi, C ;
Pettini, M .
PHYSICAL REVIEW LETTERS, 1997, 79 (22) :4361-4364
[9]  
CAIANI L, HEPTH9706081 LANL
[10]   Riemannian theory of Hamiltonian chaos and Lyapunov exponents [J].
Casetti, L ;
Clementi, C ;
Pettini, M .
PHYSICAL REVIEW E, 1996, 54 (06) :5969-5984