The structure of graphs not admitting a fixed immersion

被引:52
作者
Wollan, Paul [1 ]
机构
[1] Univ Roma La Sapienza, Dept Comp Sci, I-00185 Rome, Italy
基金
欧洲研究理事会;
关键词
Immersion; Edge disjoint; Tree decompositions; Tree-cut decompositions; CUTWIDTH; ALGORITHM; TREES; ORDER;
D O I
10.1016/j.jctb.2014.07.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present an easy structure theorem for graphs which do not admit an immersion of the complete graph K-t. The theorem motivates the definition of a variation of tree decompositions based on edge cuts instead of vertex cuts which we call tree-cut decompositions. We give a definition for the width of tree-cut decompositions, and using this definition along with the structure theorem for excluded clique immersions, we prove that every graph either has bounded tree-cut width or admits an immersion of a large wall. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:47 / 66
页数:20
相关论文
共 23 条
[1]  
Abu-Khzam FN, 2003, LECT NOTES COMPUT SC, V2697, P394
[2]   GRAPHS WITH SMALL BANDWIDTH AND CUTWIDTH [J].
CHUNG, FRK ;
SEYMOUR, PD .
DISCRETE MATHEMATICS, 1989, 75 (1-3) :113-119
[3]   A MINIMUM DEGREE CONDITION FORCING COMPLETE GRAPH IMMERSION [J].
DeVos, Matt ;
Dvorak, Zdenek ;
Fox, Jacob ;
McDonald, Jessica ;
Mohar, Bojan ;
Scheide, Diego .
COMBINATORICA, 2014, 34 (03) :279-298
[4]  
DeVos M, 2013, ELECTRON J COMB, V20
[5]   Immersing small complete graphs [J].
DeVos, Matt ;
Kawarabayashi, Ken-ichi ;
Mohar, Bojan ;
Okamura, Haruko .
ARS MATHEMATICA CONTEMPORANEA, 2010, 3 (02) :139-146
[6]  
Dvorak Z., COMMUNICATION
[7]   ON WELL-PARTIAL-ORDER THEORY AND ITS APPLICATION TO COMBINATORIAL PROBLEMS OF VLSI DESIGN [J].
FELLOWS, MR ;
LANGSTON, MA .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1992, 5 (01) :117-126
[8]   On H-immersions [J].
Ferrara, Michael ;
Gould, Ronald J. ;
Tansey, Gerard ;
Whalen, Thor .
JOURNAL OF GRAPH THEORY, 2008, 57 (03) :245-254
[9]   Linear connectivity forces large complete bipartite minors: An alternative approach [J].
Froehlich, Jan-Oliver ;
Mueller, Theodor .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2011, 101 (06) :502-508
[10]  
Garey MR., 1979, Computers and Intractability