Challenges in Data Crowdsourcing

被引:93
作者
Garcia-Molina, Hector [1 ]
Joglekar, Manas [1 ]
Marcus, Adam [2 ]
Parameswaran, Aditya [3 ]
Verroios, Vasilis [1 ]
机构
[1] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[2] Unltd Labs, San Francisco, CA 94103 USA
[3] Univ Illinois UIUC, Dept Comp Sci, Champaign, IL 61820 USA
关键词
Data crowdsourcing; data augmenting; data curation; data processing; crowdsourcing space; crowdsourcing design; crowdsourcing workflow; worker management;
D O I
10.1109/TKDE.2016.2518669
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Crowdsourcing refers to solving large problems by involving human workers that solve component sub-problems or tasks. In data crowdsourcing, the problem involves data acquisition, management, and analysis. In this paper, we provide an overview of data crowdsourcing, giving examples of problems that the authors have tackled, and presenting the key design steps involved in implementing a crowdsourced solution. We also discuss some of the open challenges that remain to be solved.
引用
收藏
页码:901 / 911
页数:11
相关论文
共 60 条
[1]  
Ajtai M, 2009, LECT NOTES COMPUT SC, V5555, P37, DOI 10.1007/978-3-642-02927-1_5
[2]   NL2CM: A Natural Language Interface to Crowd Mining [J].
Amsterdamer, Yael ;
Kukliansky, Anna ;
Milo, Tova .
SIGMOD'15: PROCEEDINGS OF THE 2015 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2015, :1433-1438
[3]  
Amsterdamer Yael., 2013, P ACM SIGMOD INT C M, P241, DOI DOI 10.1145/2463676.2465318
[4]   The Importance of Being Expert: Efficient Max-Finding in Crowdsourcing [J].
Anagnostopoulos, Aris ;
Becchetti, Luca ;
Fazzone, Adriano ;
Mele, Ida ;
Riondato, Matteo .
SIGMOD'15: PROCEEDINGS OF THE 2015 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2015, :983-998
[5]  
[Anonymous], 2010, P 23ND ANN ACM S USE, DOI 10.1145/1866029.1866078
[6]  
[Anonymous], ARXIV12093686
[7]  
[Anonymous], 2010, P 23ND ANN ACM S USE, DOI DOI 10.1145/1866029.1866040
[8]  
[Anonymous], 2012, P ACM 2012 C COMP SU, DOI DOI 10.1145/2145204.2145354
[9]  
[Anonymous], 2011, P 2011 ACM SIGMOD IN
[10]  
[Anonymous], 2013, Proceedings of the 16th International Conference on Database Theory, DOI DOI 10.1145/2448496.2448524