Experimentally Validated Reconstruction and Analysis of a Genome-Scale Metabolic Model of an Anaerobic Neocallimastigomycota Fungus

被引:40
作者
Wilken, St. Elmo [1 ]
Monk, Jonathan M. [2 ]
Leggieri, Patrick A. [1 ]
Lawson, Christopher E. [3 ,4 ]
Lankiewicz, Thomas S. [3 ,5 ]
Seppala, Susanna [1 ]
Daum, Chris G. [6 ]
Jenkins, Jerry [6 ,7 ]
Lipzen, Anna M. [6 ]
Mondo, Stephen J. [6 ]
Barry, Kerrie W. [6 ]
Grigoriev, Igor V. [6 ,8 ]
Henske, John K. [1 ]
Theodorou, Michael K. [9 ]
Palsson, Bernhard O. [2 ,3 ]
Petzold, Linda R. [10 ]
O'Malley, Michelle A. [1 ,3 ]
机构
[1] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA
[2] Univ Calif San Diego, Dept Bioengn, San Diego, CA 92103 USA
[3] Lawrence Berkeley Natl Lab, Joint Bioenergy Inst, Emeryville, CA 94720 USA
[4] Lawrence Berkeley Natl Lab, Biol Syst & Engn Div, Berkeley, CA USA
[5] Univ Calif Santa Barbara, Dept Evolut Ecol & Marine Biol, Santa Barbara, CA 93106 USA
[6] USDA, Joint Genome Inst, Lawrence Berkeley Natl Lab, Berkeley, CA USA
[7] HudsonAlpha Inst Biotechnol, Huntsville, AL USA
[8] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA
[9] Harper Adams Univ, Dept Agr & Environm, Anim Prod, Agr Ctr Sustainable Energy Syst, Newport, Shrops, England
[10] Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
genome-scale metabolic model; C-13 metabolic flux analysis; nonmodel fungus; Neocallimastigomycota; flux balance analysis; Neocallimastix lanati; anaerobes; anaerobic fungi; DEPENDENT GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE; PYRUVATE-FORMATE-LYASE; GUT FUNGI; FLUX ANALYSIS; LIFE-CYCLE; GROWTH; HYDROGENOSOMES; ENZYMES; RUMEN; OPTIMIZATION;
D O I
10.1128/mSystems.00002-21
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Anaerobic gut fungi in the phylum Neocallimastigomycota typically inhabit the digestive tracts of large mammalian herbivores, where they play an integral role in the decomposition of raw lignocellulose into its constitutive sugar monomers. However, quantitative tools to study their physiology are lacking, partially due to their complex and unresolved metabolism that includes the largely uncharacterized fungal hydrogenosome. Modern omits approaches combined with metabolic modeling can be used to establish an understanding of gut fungal metabolism and develop targeted engineering strategies to harness their degradation capabilities for lignocellulosic bioprocessing. Here, we introduce a high-quality genome of the anaerobic fungus Neocallimastix lanati from which we constructed the first genome-scale metabolic model of an anaerobic fungus. Relative to its size (200 Mbp, sequenced at 62 x depth), it is the least fragmented publicly available gut fungal genome to date. Of the 1,788 lignocellulolytic enzymes annotated in the genome, 585 are associated with the fungal cellulosome, underscoring the powerful lignocellulolytic potential of N. lanati. The genome-scale metabolic model captures the primary metabolism of N. lanati and accurately predicts experimentally validated substrate utilization requirements. Additionally, metabolic flux predictions are verified by C-13 metabolic flux analysis, demonstrating that the model faithfully describes the underlying fungal metabolism. Furthermore, the model clarifies key aspects of the hydrogenosomal metabolism and can be used as a platform to quantitatively study these biotechnologically important yet poorly understood early-branching fungi. IMPORTANCE Recent genomic analyses have revealed that anaerobic gut fungi possess both the largest number and highest diversity of lignocellulolytic enzymes of all sequenced fungi, explaining their ability to decompose lignocellulosic substrates, e.g., agricultural waste, into fermentable sugars. Despite their potential, the development of engineering methods for these organisms has been slow due to their complex life cycle, understudied metabolism, and challenging anaerobic culture requirements. Currently, there is no framework that can be used to combine multi-omic data sets to understand their physiology. Here, we introduce a high-quality PacBio-sequenced genome of the anaerobic gut fungus Neocallimastix lanati. Beyond identifying a trove of lignocellulolytic enzymes, we use this genome to construct the first genome-scale metabolic model of an anaerobic gut fungus. The model is experimentally validated and sheds light on unresolved metabolic features common to gut fungi. Model-guided analysis will pave the way for deepening our understanding of anaerobic gut fungi and provides a systematic framework to guide strain engineering efforts of these organisms for biotechnological use.
引用
收藏
页数:22
相关论文
共 79 条
[1]   A hydrogenosome with pyruvate formate-lyase: anaerobic chytrid fungi use an alternative route for pyruvate catabolism [J].
Akhmanova, A ;
Voncken, FGJ ;
Hosea, KM ;
Harhangi, H ;
Keltjens, JT ;
den Camp, HJMO ;
Vogels, GD ;
Hackstein, JHP .
MOLECULAR MICROBIOLOGY, 1999, 32 (05) :1103-1114
[2]   DeepLoc: prediction of protein subcellular localization using deep learning [J].
Armenteros, Jose Juan Almagro ;
Sonderby, Casper Kaae ;
Sonderby, Soren Kaae ;
Nielsen, Henrik ;
Winther, Ole .
BIOINFORMATICS, 2017, 33 (21) :3387-3395
[3]  
Aung Hnin W, 2013, Ind Biotechnol (New Rochelle N Y), V9, P215
[4]   UniProt: a worldwide hub of protein knowledge [J].
Bateman, Alex ;
Martin, Maria-Jesus ;
Orchard, Sandra ;
Magrane, Michele ;
Alpi, Emanuele ;
Bely, Benoit ;
Bingley, Mark ;
Britto, Ramona ;
Bursteinas, Borisas ;
Busiello, Gianluca ;
Bye-A-Jee, Hema ;
Da Silva, Alan ;
De Giorgi, Maurizio ;
Dogan, Tunca ;
Castro, Leyla Garcia ;
Garmiri, Penelope ;
Georghiou, George ;
Gonzales, Daniel ;
Gonzales, Leonardo ;
Hatton-Ellis, Emma ;
Ignatchenko, Alexandr ;
Ishtiaq, Rizwan ;
Jokinen, Petteri ;
Joshi, Vishal ;
Jyothi, Dushyanth ;
Lopez, Rodrigo ;
Luo, Jie ;
Lussi, Yvonne ;
MacDougall, Alistair ;
Madeira, Fabio ;
Mahmoudy, Mahdi ;
Menchi, Manuela ;
Nightingale, Andrew ;
Onwubiko, Joseph ;
Palka, Barbara ;
Pichler, Klemens ;
Pundir, Sangya ;
Qi, Guoying ;
Raj, Shriya ;
Renaux, Alexandre ;
Lopez, Milagros Rodriguez ;
Saidi, Rabie ;
Sawford, Tony ;
Shypitsyna, Aleksandra ;
Speretta, Elena ;
Turner, Edward ;
Tyagi, Nidhi ;
Vasudev, Preethi ;
Volynkin, Vladimir ;
Wardell, Tony .
NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) :D506-D515
[5]   Measuring Cellular Biomass Composition for Computational Biology Applications [J].
Beck, Ashley E. ;
Hunt, Kristopher A. ;
Carlson, Ross P. .
PROCESSES, 2018, 6 (05)
[6]   Systems metabolic engineering: Genome-scale models and beyond [J].
Blazeck, John ;
Alper, Hal .
BIOTECHNOLOGY JOURNAL, 2010, 5 (07) :647-659
[7]   An anaerobic mitochondrion that produces hydrogen [J].
Boxma, B ;
de Graaf, RM ;
van der Staay, GWM ;
van Alen, TA ;
Ricard, G ;
Gabaldón, T ;
van Hoek, AHAM ;
Moon-van der Staay, SY ;
Koopman, WJH ;
van Hellemond, JJ ;
Tielens, AGM ;
Friedrich, T ;
Veenhuis, M ;
Huynen, MA ;
Hackstein, JHP .
NATURE, 2005, 434 (7029) :74-79
[8]   The anaerobic chytridiomycete fungus Piromyces sp E2 produces ethanol via pyruvate:formate lyase and an alcohol dehydrogenase E [J].
Boxma, B ;
Voncken, F ;
Jannink, S ;
van Alen, T ;
Akhmanova, A ;
van Weelden, SWH ;
van Hellemond, JJ ;
Ricard, G ;
Huynen, M ;
Tielens, AGM ;
Hackstein, JHP .
MOLECULAR MICROBIOLOGY, 2004, 51 (05) :1389-1399
[9]   The [FeFe] hydrogenase of Nyctotherus ovalis has a chimeric origin [J].
Boxma, Brigitte ;
Ricard, Guenola ;
van Hoek, Angela Ham ;
Severing, Edouard ;
Moon-van der Staay, Seung-Yeo ;
van der Staay, Georg W. M. ;
van Alen, Theo A. ;
de Graaf, Rob M. ;
Cremers, Geert ;
Kwantes, Michiel ;
McEwan, Neil R. ;
Newbold, C. Jamie ;
Jouany, Jean-Pierre ;
Michalowski, Tadeusz ;
Pristas, Peter ;
Huynen, Martijn A. ;
Hackstein, Johannes H. P. .
BMC EVOLUTIONARY BIOLOGY, 2007, 7 (1)
[10]   SEQUENCE, EXPRESSION, AND FUNCTION OF THE GENE FOR THE NONPHOSPHORYLATING, NADP-DEPENDENT GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE OF STREPTOCOCCUS-MUTANS [J].
BOYD, DA ;
CVITKOVITCH, DG ;
HAMILTON, IR .
JOURNAL OF BACTERIOLOGY, 1995, 177 (10) :2622-2627