Computational multiqubit tunnelling in programmable quantum annealers

被引:166
作者
Boixo, Sergio [1 ]
Smelyanskiy, Vadim N. [1 ,2 ]
Shabani, Alireza [1 ]
Isakov, Sergei V. [1 ]
Dykman, Mark [3 ]
Denchev, Vasil S. [1 ]
Amin, Mohammad H. [4 ,5 ]
Smirnov, Anatoly Yu. [4 ]
Mohseni, Masoud [1 ]
Neven, Hartmut [1 ]
机构
[1] Google, Venice, CA 90291 USA
[2] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA
[3] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA
[4] D Wave Syst Inc, Burnaby, BC V5C 6G9, Canada
[5] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada
关键词
ISING-MODEL;
D O I
10.1038/ncomms10327
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum tunnelling is a phenomenon in which a quantum state traverses energy barriers higher than the energy of the state itself. Quantum tunnelling has been hypothesized as an advantageous physical resource for optimization in quantum annealing. However, computational multiqubit tunnelling has not yet been observed, and a theory of co-tunnelling under high-and low-frequency noises is lacking. Here we show that 8-qubit tunnelling plays a computational role in a currently available programmable quantum annealer. We devise a probe for tunnelling, a computational primitive where classical paths are trapped in a false minimum. In support of the design of quantum annealers we develop a nonperturbative theory of open quantum dynamics under realistic noise characteristics. This theory accurately predicts the rate of many-body dissipative quantum tunnelling subject to the polaron effect. Furthermore, we experimentally demonstrate that quantum tunnelling outperforms thermal hopping along classical paths for problems with up to 200 qubits containing the computational primitive.
引用
收藏
页数:7
相关论文
共 37 条
[1]   Reexamining classical and quantum models for the D-Wave One processor [J].
Albash, T. ;
Ronnow, T. F. ;
Troyer, M. ;
Lidar, D. A. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2015, 224 (01) :111-129
[2]   Consistency tests of classical and quantum models for a quantum annealer [J].
Albash, Tameem ;
Vinci, Walter ;
Mishra, Anurag ;
Warburton, Paul A. ;
Lidar, Daniel A. .
PHYSICAL REVIEW A, 2015, 91 (04)
[3]   Macroscopic resonant tunneling in the presence of low frequency noise [J].
Amin, M. H. S. ;
Averin, Dmitri V. .
PHYSICAL REVIEW LETTERS, 2008, 100 (19)
[4]  
Boixo S, 2014, NAT PHYS, V10, P218, DOI [10.1038/nphys2900, 10.1038/NPHYS2900]
[5]   Experimental signature of programmable quantum annealing [J].
Boixo, Sergio ;
Albash, Tameem ;
Spedalieri, Federico M. ;
Chancellor, Nicholas ;
Lidar, Daniel A. .
NATURE COMMUNICATIONS, 2013, 4
[6]   Quantum adiabatic algorithms and large spin tunnelling [J].
Boulatov, A ;
Smelyanskiy, VN .
PHYSICAL REVIEW A, 2003, 68 (06) :12
[7]   Quantum annealing of a disordered magnet [J].
Brooke, J ;
Bitko, D ;
Rosenbaum, TF ;
Aeppli, G .
SCIENCE, 1999, 284 (5415) :779-781
[8]  
Dash S., 2013, PREPRINT
[9]   Thermally assisted quantum annealing of a 16-qubit problem [J].
Dickson, N. G. ;
Johnson, M. W. ;
Amin, M. H. ;
Harris, R. ;
Altomare, F. ;
Berkley, A. J. ;
Bunyk, P. ;
Cai, J. ;
Chapple, E. M. ;
Chavez, P. ;
Cioata, F. ;
Cirip, T. ;
deBuen, P. ;
Drew-Brook, M. ;
Enderud, C. ;
Gildert, S. ;
Hamze, F. ;
Hilton, J. P. ;
Hoskinson, E. ;
Karimi, K. ;
Ladizinsky, E. ;
Ladizinsky, N. ;
Lanting, T. ;
Mahon, T. ;
Neufeld, R. ;
Oh, T. ;
Perminov, I. ;
Petroff, C. ;
Przybysz, A. ;
Rich, C. ;
Spear, P. ;
Tcaciuc, A. ;
Thom, M. C. ;
Tolkacheva, E. ;
Uchaikin, S. ;
Wang, J. ;
Wilson, A. B. ;
Merali, Z. ;
Rose, G. .
NATURE COMMUNICATIONS, 2013, 4
[10]  
Farhi E., 2000, PREPRINT