Equiangular lines in Cr

被引:11
作者
Et-Taoui, B [1 ]
机构
[1] Univ Haute Alsace, Math Lab, F-68093 Mulhouse, France
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2000年 / 11卷 / 02期
关键词
D O I
10.1016/S0019-3577(00)89078-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A subset S of a complex projective space is F-regular provided each two points of S have the same non zero distance and each subset of three points of S has the same shape invariant. An important problem in the distance geometry of a complex projective space CPr-1 is the study of its F-regular subsets, and the determination of the largest integer n(r) such that CPr-1 contains an F-regular subset of n(r) points. In this paper, it is established that r + 1 less than or equal to n(r) less than or equal to 2r for any r and n(2(k)) = 2(k+1) for any integer k. In particular, we get that the maximum number of equi-isoclinic planes in the Euclidean space R2k+1 with the parameter 1/(2k+1-1), is equal to 2(k+1).
引用
收藏
页码:201 / 207
页数:7
相关论文
共 12 条
[1]  
BREHM U, 1990, GEOMETRIAE DEDICATA, V33, P59
[2]   Congruence criteria for finite subsets of complex projective and complex hyperbolic spaces [J].
Brehm, U ;
Et-Taoui, B .
MANUSCRIPTA MATHEMATICA, 1998, 96 (01) :81-95
[3]  
EtTaoui B, 1996, GEOMETRIAE DEDICATA, V63, P297
[4]  
ETTAOUI B, 1994, THESIS MULHOUSE
[5]   ORTHOGONAL MATRICES WITH ZERO DIAGONAL [J].
GOETHALS, JM ;
SEIDEL, JJ .
CANADIAN JOURNAL OF MATHEMATICS, 1967, 19 (05) :1001-&
[6]   64 lines from a quaternionic polytope [J].
Hoggar, SG .
GEOMETRIAE DEDICATA, 1998, 69 (03) :287-289
[7]  
LEMMENS PWH, 1973, P K NED AKAD A MATH, V76, P98
[8]   EQUIANGULAR LINES [J].
LEMMENS, PWH ;
SEIDEL, JJ .
JOURNAL OF ALGEBRA, 1973, 24 (03) :494-512
[9]  
LEMMENS PWH, 1973, INDAG MATH, V35, P98
[10]  
Paley REAC., 1933, J MATH PHYS, V12, P311, DOI [DOI 10.1002/SAPM1933121311, 10.1002/sapm1933121311]