HPMC crosslinked chitosan/hydroxyapatite scaffolds containing Lemongrass oil for potential bone tissue engineering applications

被引:26
作者
Ali, Hafiz U. [1 ]
Iqbal, Dure N. [1 ]
Iqbal, Munawar [2 ]
Ezzine, Safa [3 ,4 ]
Arshad, Aysha [5 ]
Zeeshan, Rabia [5 ]
Chaudhry, Aqif A. [5 ]
Alshawwa, Samar Z. [6 ]
Nazir, Arif [1 ]
Khan, Ather F. [5 ]
机构
[1] Univ Lahore, Dept Chem, Lahore, Pakistan
[2] Univ Educ, Div Sci & Technol, Dept Chem, Lahore, Pakistan
[3] King Khalid Univ, Dept Chem, Coll Sci, POB 9004, Abha, Saudi Arabia
[4] Lab Mat & Environm Dev Durable LR18ES10, 9 Ave Dr Zoheir Safi, Tunis 1006, Tunisia
[5] COMSATS Univ Islamabad, Interdisciplinary Res Ctr Biomed Mat, Lahore Campus, Lahore, Pakistan
[6] Princess Nourah Bint Abdulrahman Univ, Coll Pharm, Dept Pharmaceut Sci, POB 84428, Riyadh 11671, Saudi Arabia
关键词
Chitosan; Hydroxypropyl methyl cellu-lose; Composite scaffolds; Lemongrass essential oil; Bioactivity; Bone tissue engineering; NANOCRYSTALLINE HYDROXYAPATITE; COMPOSITE SCAFFOLDS; ANTIMICROBIAL PROPERTIES; MECHANICAL-PROPERTIES; CHITOSAN FILMS; ANTIBACTERIAL; FTIR; ANTIOXIDANT; PARTICLES; DELIVERY;
D O I
10.1016/j.arabjc.2022.103850
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The chitosan (CS), hydroxypropyl methyl cellulose (HPMC), hydroxyapatite (HAp and Lemon grass oil (LGO) based scaffolds was prepared by freeze gelation method. The composite for-mation was confirmed by FTIR (Fourier-transform infrared spectroscopy) analysis and surface morphology was evaluated by SEM (Scanning Electron Microscopy) analysis. The mechanical strength, biodegradation, swelling, porosity and antibacterial activity were evaluated on the basis of LGO contents. The scaffold structure was porous and the mechanical strength was enhanced as a function of LGO contents. The scaffold properties analysis revealed the biodegradation nature and swelling behavior of CS-HPMC-HAp-LGO was also affected significantly as a function of LGO contents. The cytotoxicity of CS-HPMC-HAp-LGO was studied against MC3T3-E1 cells and based on cell viability, no toxic sign was observed. The antimicrobial activity was evaluated against S. aureus and CS-HPMC-HAp-LGO scaffolds showed promising activity, which was varied as a function of LGO contents. The findings revealed that the CS-HPMC-HAp-LGO are biocom-patible and have potential for bone tissue engineering.(c) 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Genipin-Crosslinked Chitosan Gels and Scaffolds for Tissue Engineering and Regeneration of Cartilage and Bone
    Muzzarelli, Riccardo A. A.
    El Mehtedi, Mohamad
    Bottegoni, Carlo
    Aquili, Alberto
    Gigante, Antonio
    MARINE DRUGS, 2015, 13 (12): : 7314 - 7338
  • [42] Porous Crosslinked Polycaprolactone Hydroxyapatite Networks for Bone Tissue Engineering
    Koupaei, Narjes
    Karkhaneh, Akbar
    TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2016, 13 (03) : 251 - 260
  • [43] Electrospun chitosan/hydroxyapatite nanofibers for bone tissue engineering
    Doan Van Hong Thien
    Hsiao, Sheng Wen
    Ho, Ming Hua
    Li, Chung Hsing
    Shih, Jia Lin
    JOURNAL OF MATERIALS SCIENCE, 2013, 48 (04) : 1640 - 1645
  • [44] Nanocomposite chitosan film containing graphene oxide/hydroxyapatite/gold for bone tissue engineering
    Prakash, J.
    Prema, D.
    Venkataprasanna, K. S.
    Balagangadharan, K.
    Selvamurugan, N.
    Venkatasubbu, G. Devanand
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2020, 154 : 62 - 71
  • [45] Scaffolds Based Bone Tissue Engineering: The Role of Chitosan
    Costa-Pinto, Ana Rita
    Reis, Rui L.
    Neves, Nuno M.
    TISSUE ENGINEERING PART B-REVIEWS, 2011, 17 (05) : 331 - 347
  • [46] Chitosan-Alginate Biocomposite Containing Fucoidan for Bone Tissue Engineering
    Venkatesan, Jayachandran
    Bhatnagar, Ira
    Kim, Se-Kwon
    MARINE DRUGS, 2014, 12 (01): : 300 - 316
  • [47] Chitosan-based 3D-printed scaffolds for bone tissue engineering
    Yadav, L. Roshini
    Chandran, S. Viji
    Lavanya, K.
    Selvamurugan, N.
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2021, 183 : 1925 - 1938
  • [48] Preparation and characterization of amine functional nano-hydroxyapatite/chitosan bionanocomposite for bone tissue engineering applications
    Atak, Besir Hakan
    Buyuk, Berna
    Huysal, Merve
    Isik, Sevim
    Senel, Mehmet
    Metzger, Wolfgang
    Cetin, Guven
    CARBOHYDRATE POLYMERS, 2017, 164 : 200 - 213
  • [49] Hydroxyapatite/Polyurethane Scaffolds for Bone Tissue Engineering
    Zhang, Tianyu
    Li, Jingxuan
    Wang, Yahui
    Han, Weimo
    Wei, Yan
    Hu, Yinchun
    Liang, Ziwei
    Lian, Xiaojie
    Huang, Di
    TISSUE ENGINEERING PART B-REVIEWS, 2024, 30 (01) : 60 - 73
  • [50] Characterization of poly(3-hydroxybutyrate)/nano-hydroxyapatite composite scaffolds fabricated without the use of organic solvents for bone tissue engineering applications
    Hayati, Amir Nemati
    Hosseinalipour, S. M.
    Rezaie, H. R.
    Shokrgozar, M. A.
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2012, 32 (03): : 416 - 422