Finite element approximation of a Stefan problem with degenerate Joule heating

被引:6
作者
Barrett, JW
Nürnberg, R
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[2] Isaac Newton Inst, Cambridge, England
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2004年 / 38卷 / 04期
关键词
Stefan problem; Joule heating; degenerate system; finite elements; convergence;
D O I
10.1051/m2an:2004030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a fully practical finite element approximation of the following degenerate system partial derivative/partial derivativetrho(u)-del.(alpha(u) delu) There Existssigma(u) \delphivertical bar(2), del.(sigma(u) delphi) = 0 subject to an initial condition on the temperature, u, and boundary conditions on both u and the electric potential, phi. In the above rho(u) is the enthalpy incorporating the latent heat of melting, alpha(u) > 0 is the temperature dependent heat conductivity, and sigma(u) greater than or equal to 0 is the electrical conductivity. The latter is zero in the frozen zone, u less than or equal to 0(1) which gives rise to the degeneracy in this Stefan system. In addition to showing stability bounds, we prove (subsequence) convergence of our finite element approximation in two and three space dimensions. The latter is non-trivial due to the degeneracy in sigma(u) and the quadratic nature of the Joule heating term forcing the Stefan problem. Finally, some numerical experiments are presented in two space dimensions.
引用
收藏
页码:633 / 652
页数:20
相关论文
共 10 条
[1]  
Barrett J. W., 1982, NUMERICAL METHODS FL, P389
[2]   Convergence of a finite-element approximation of surfactant spreading on a thin film in the presence of van der Waals forces [J].
Barrett, JW ;
Nürnberg, R .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2004, 24 (02) :323-363
[3]  
ELLIOTT CM, 1995, MATH COMPUT, V64, P1433, DOI 10.1090/S0025-5718-1995-1308451-4
[4]   ERROR ANALYSIS OF THE ENTHALPY METHOD FOR THE STEFAN PROBLEM [J].
ELLIOTT, CM .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1987, 7 (01) :61-71
[6]   Existence of generalized weak solutions to a model for in situ vitrification [J].
Gariepy, RF ;
Shillor, M ;
Xu, X .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 1998, 9 :543-559
[7]  
KOEGLER SS, 1991, AM CERAM SOC BULL, V70, P832
[8]  
Simon J., 1986, ANN MAT PUR APPL, V146, P65, DOI [DOI 10.1007/BF01762360, DOI 10.1007/BF01762360.MR916688]
[9]  
Xu X., 1996, DIFFERENTIAL INTEGRA, V9, P119
[10]   Existence for a model arising from the in situ vitrification process [J].
Xu, XS .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 271 (02) :333-342