Schrodinger-improved Boussinesq system in two space dimensions

被引:3
作者
Ozawa, Tohru [1 ]
Tomioka, Kenta [1 ]
机构
[1] Waseda Univ, Dept Appl Phys, Tokyo 1698555, Japan
关键词
Schrodinger-improved Boussinesq system; Zakharov system; Global solutions; WELL-POSEDNESS; GLOBAL EXISTENCE; CAUCHY-PROBLEM; LANGMUIR TURBULENCE; ZAKHAROV SYSTEM; EQUATIONS; SCATTERING; UNIQUENESS; NLS; 1D;
D O I
10.1007/s00028-022-00793-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Cauchy problem for the Schrodinger-improved Boussinesq system in a twodimensional domain. Under natural assumptions on the data without smallness, we prove the existence and uniqueness of global strong solutions. Moreover, we consider the vanishing "improvement" limit of global solutions as the coefficient of the linear term of the highest order in the equation of ion sound waves tends to zero. Under the same smallness assumption on the data as in the Zakharov case, solutions in the vanishing "improvement" limit are shown to satisfy the Zakharov system.
引用
收藏
页数:16
相关论文
共 50 条
[11]   Global existence on nonlinear Schrodinger-IMBq equations [J].
Cho, Yonggeun ;
Ozawa, Tohru .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2006, 46 (03) :535-552
[12]   Well-posedness and orbital stability of traveling waves for the Schrodinger-improved Boussinesq system [J].
Esfahani, Amin ;
Pastor, Ademir .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 22 :206-218
[13]   Cauchy problem and vanishing dispersion limit for Schrodinger-improved Boussinesq equations [J].
Fan, Jishan ;
Ozawa, Tohru .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 485 (02)
[14]  
Fang D., 2009, Analysis (Munich), V29, P265
[15]  
Fujiwara K., DISCRETE CONTIN DYN, P473
[16]   A REMARK ON SOME PAPERS BY HAYASHI,N. AND OZAWA,T. [J].
GINIBRE, J .
JOURNAL OF FUNCTIONAL ANALYSIS, 1989, 85 (02) :349-352
[17]   On the Cauchy problem for the Zakharov system [J].
Ginibre, J ;
Tsutsumi, Y ;
Velo, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 151 (02) :384-436
[18]  
Guo B., 2016, The Zakharov system and its soliton solutions
[19]   On the existence and uniqueness of smooth solution for a generalized Zakharov equation [J].
Guo, Boling ;
Zhang, Jingjun ;
Pu, Xueke .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 365 (01) :238-253
[20]   Generalized Strichartz Estimates and Scattering for 3D Zakharov System [J].
Guo, Zihua ;
Lee, Sanghyuk ;
Nakanishi, Kenji ;
Wang, Chengbo .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 331 (01) :239-259