Schrodinger-improved Boussinesq system in two space dimensions

被引:3
作者
Ozawa, Tohru [1 ]
Tomioka, Kenta [1 ]
机构
[1] Waseda Univ, Dept Appl Phys, Tokyo 1698555, Japan
关键词
Schrodinger-improved Boussinesq system; Zakharov system; Global solutions; WELL-POSEDNESS; GLOBAL EXISTENCE; CAUCHY-PROBLEM; LANGMUIR TURBULENCE; ZAKHAROV SYSTEM; EQUATIONS; SCATTERING; UNIQUENESS; NLS; 1D;
D O I
10.1007/s00028-022-00793-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Cauchy problem for the Schrodinger-improved Boussinesq system in a twodimensional domain. Under natural assumptions on the data without smallness, we prove the existence and uniqueness of global strong solutions. Moreover, we consider the vanishing "improvement" limit of global solutions as the coefficient of the linear term of the highest order in the equation of ion sound waves tends to zero. Under the same smallness assumption on the data as in the Zakharov case, solutions in the vanishing "improvement" limit are shown to satisfy the Zakharov system.
引用
收藏
页数:16
相关论文
共 50 条
[1]   EQUATIONS OF LANGMUIR TURBULENCE AND NONLINEAR SCHRODINGER-EQUATION - SMOOTHNESS AND APPROXIMATION [J].
ADDED, H ;
ADDED, S .
JOURNAL OF FUNCTIONAL ANALYSIS, 1988, 79 (01) :183-210
[2]  
ADDED H, 1984, CR ACAD SCI I-MATH, V299, P551
[3]   Well-posedness for the Schrodinger-improved Boussinesq system and related bilinear estimates [J].
Akahori, Takafumi .
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2007, 50 (03) :469-489
[4]  
[Anonymous], 2003, Courant Lecture Notes
[5]  
[Anonymous], 1992, Differential Integral Equations
[6]  
[Anonymous], 1998, Oxford Lecture Series in Mathematics and its Applications
[7]   On the 2D Zakharov system with L2 Schrodinger data [J].
Bejenaru, I. ;
Herr, S. ;
Holmer, J. ;
Tataru, D. .
NONLINEARITY, 2009, 22 (05) :1063-1089
[8]  
Bourgain J., 1996, Int. Math. Res. Notices, V11, P515
[9]  
Brezis H., 1980, Nonlinear Analysis Theory, Methods & Applications, V4, P677, DOI 10.1016/0362-546X(80)90068-1
[10]   Finite Time Extinction for Nonlinear Schrodinger Equation in 1D and 2D [J].
Carles, Remi ;
Ozawa, Tohru .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2015, 40 (05) :897-917