Quantitative terahertz emission nanoscopy with multiresonant near-field probes

被引:22
作者
Mooshammer, Fabian [1 ,2 ,3 ]
Plankl, Markus [1 ,2 ]
Siday, Thomas [1 ,2 ]
Zizlsperger, Martin [1 ,2 ]
Sandner, Fabian [1 ,2 ]
Vitalone, Rocco [3 ]
Jing, Ran [3 ]
Huber, Markus A. [1 ,2 ]
Basov, D. N. [3 ]
Huber, Rupert [1 ,2 ]
机构
[1] Univ Regensburg, Dept Phys, D-93040 Regensburg, Germany
[2] Univ Regensburg, Regensburg Ctr Ultrafast Nanoscopy RUN, D-93040 Regensburg, Germany
[3] Columbia Univ, Dept Phys, New York, NY 10027 USA
关键词
MICROSCOPY; DYNAMICS;
D O I
10.1364/OL.430400
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
By sampling terahertz waveforms emitted from InAs surfaces, we reveal how the entire, realistic geometry of typical near-field probes drastically impacts the broadband electromagnetic fields. In the time domain, these modifications manifest as a shift in the carrier-envelope phase and emergence of a replica pulse with a time delay dictated by the length of the cantilever. This interpretation is fully corroborated by quantitative simulations of terahertz emission nanoscopy based on the finite element method. Our approach provides a solid theoretical framework for quantitative nanospectroscopy and sets the stage for a reliable description of subcycle, near-field microscopy at terahertz frequencies. (C) 2021 Optical Society of America
引用
收藏
页码:3572 / 3575
页数:4
相关论文
共 26 条
[1]   Ultrafast photocurrents at the surface of the three-dimensional topological insulator Bi2Se3 [J].
Braun, Lukas ;
Mussler, Gregor ;
Hruban, Andrzej ;
Konczykowski, Marcin ;
Schumann, Thomas ;
Wolf, Martin ;
Muenzenberg, Markus ;
Perfetti, Luca ;
Kampfrath, Tobias .
NATURE COMMUNICATIONS, 2016, 7
[2]   Modern Scattering-Type Scanning Near-Field Optical Microscopy for Advanced Material Research [J].
Chen, Xinzhong ;
Hu, Debo ;
Mescall, Ryan ;
You, Guanjun ;
Basov, D. N. ;
Dai, Qing ;
Liu, Mengkun .
ADVANCED MATERIALS, 2019, 31 (24)
[3]   Chiral terahertz wave emission from the Weyl semimetal TaAs [J].
Gao, Y. ;
Kaushik, S. ;
Philip, E. J. ;
Li, Z. ;
Qin, Y. ;
Liu, Y. P. ;
Zhang, W. L. ;
Su, Y. L. ;
Chen, X. ;
Weng, H. ;
Kharzeev, D. E. ;
Liu, M. K. ;
Qi, J. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[4]   Quasi-analytical model for scattering infrared near-field microscopy on layered systems [J].
Hauer, Benedikt ;
Engelhardt, Andreas P. ;
Taubner, Thomas .
OPTICS EXPRESS, 2012, 20 (12) :13173-13188
[5]   Terahertz spectroscopy and imaging - Modern techniques and applications [J].
Jepsen, Peter Uhd ;
Cooke, David G. ;
Koch, Martin .
LASER & PHOTONICS REVIEWS, 2011, 5 (01) :124-166
[6]   Simulation of terahertz generation at semiconductor surfaces [J].
Johnston, MB ;
Whittaker, DM ;
Corchia, A ;
Davies, AG ;
Linfield, EH .
PHYSICAL REVIEW B, 2002, 65 (16)
[7]  
Kampfrath T, 2013, NAT NANOTECHNOL, V8, P256, DOI [10.1038/nnano.2013.43, 10.1038/NNANO.2013.43]
[8]   Laser terahertz-emission microscope for inspecting electrical faults in integrated circuits [J].
Kiwa, T ;
Tonouchi, M ;
Yamashita, M ;
Kawase, K .
OPTICS LETTERS, 2003, 28 (21) :2058-2060
[9]   Nanoscale Laser Terahertz Emission Microscopy [J].
Klarskov, Pernille ;
Kim, Hyewon ;
Colvin, Vicki L. ;
Mittleman, Daniel M. .
ACS PHOTONICS, 2017, 4 (11) :2676-2680
[10]   Femtosecond charge transport in polar semiconductors [J].
Leitenstorfer, A ;
Hunsche, S ;
Shah, J ;
Nuss, MC ;
Knox, WH .
PHYSICAL REVIEW LETTERS, 1999, 82 (25) :5140-5143