Droplet dynamics under an impinging air jet

被引:2
作者
Chen, Zih-Yin [1 ]
Hooshanginejad, Alireza [2 ]
Kumar, Satish [3 ]
Lee, Sungyon [1 ]
机构
[1] Univ Minnesota, Dept Mech Engn, 111 Church St SE, Minneapolis, MN 55455 USA
[2] Cornell Univ, Dept Biol & Environm Engn, Ithaca, NY 14853 USA
[3] Univ Minnesota, Dept Chem Engn & Mat Sci, 421 Washington Ave SE, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
drops; contact lines; lubrication theory; THIN LIQUID-FILMS; GAS-JET; SHEAR; IMPINGEMENT; SIMULATION; SUBSTRATE; GRAVITY; ROUGH; MODEL; WALL;
D O I
10.1017/jfm.2022.450
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Partially wetting droplets under an airflow can exhibit complex behaviours that arise from the coupling of surface tension, inertia of the external flow and contact-line dynamics. Recent experiments by Hooshanginejad et al. (J. Fluid Mech., vol. 901, 2020) revealed that a millimetric partially wetting water droplet under an impinging jet can oscillate in place, split or depin away from the jet, depending on the magnitude (i.e. 5-20 m s(-1)) and position of the jet. To rationalise the experimental observations, we develop a two-dimensional lubrication model of the droplet that incorporates the external pressure of the impinging high-Reynolds-number jet, in addition to the capillary and hydrostatic pressures of the droplet. Distinct from the previous model by Hooshanginejad et al. (J. Fluid Mech., vol. 901, 2020), we simulate the motion of the contact line using precursor film and disjoining pressure, which allows us to capture a wider range of droplet behaviours, including the droplet dislodging to one side. Our simulations exhibit a comparable time-scale of droplet deformations and similar outcomes as the experimental observations. We also obtain the analytical steady-state solutions of the droplet shapes and construct the minimum criteria for splitting and depinning.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Effect of the size of air bubbles on enhancement of heat transfer in an impinging liquid jet
    Pakhomov, M. A.
    Terekhov, V. I.
    [J]. HIGH TEMPERATURE, 2016, 54 (01) : 150 - 152
  • [32] Effect of driven frequency on flow and heat transfer of an impinging synthetic air jet
    Liu, Yao-Hsien
    Tsai, Shu-Yao
    Wang, Chi-Chuan
    [J]. APPLIED THERMAL ENGINEERING, 2015, 75 : 289 - 297
  • [33] Experimental performance evaluation of an impinging jet with fins type solar air heater
    Goel, Abhishek Kumar
    Singh, Shailendra Narayan
    [J]. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2021, 28 (16) : 19944 - 19957
  • [34] Active control of impinging jet for modification of mixing
    Kim, Jungwoo
    [J]. JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2014, 28 (03) : 927 - 935
  • [35] Flow and heat transfer of impinging jet array associated with entrained air ducts
    Yeranee, Kirttayoth
    Wae-hayee, Makatar
    Nuntadusit, Chayut
    [J]. APPLIED THERMAL ENGINEERING, 2020, 178
  • [36] Heat transfer and friction factor correlations for impinging jet solar air heater
    Chauhan, Ranchan
    Thakur, N. S.
    [J]. EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2013, 44 : 760 - 767
  • [37] Heat Transfer Intensification of a Confined Impinging Air Jet Via a Guiding Baffle
    Maghrabie, Hussein M.
    Attalla, M.
    Abdelfattah, Mustafa
    [J]. ASME JOURNAL OF HEAT AND MASS TRANSFER, 2023, 145 (07):
  • [38] Jet Impinging in Plunging Dropshafts of Medium Height
    Liu, Jiachun
    Huang, Biao
    Zhu, David Z.
    [J]. JOURNAL OF HYDRAULIC ENGINEERING, 2022, 148 (12)
  • [39] Numerical Simulation of Molten metal Droplet Impinging in Uniform Droplet Spray Rapid Prototyping
    Yin Fengliang
    Zhu Sheng
    Liu Jian
    Liang Yuanyuan
    [J]. PHYSICAL AND NUMERICAL SIMULATION OF MATERIAL PROCESSING VI, PTS 1 AND 2, 2012, 704-705 : 680 - 684
  • [40] Experimental and Numerical Study of Sediment Scour Under Impinging Vertical Jet
    Baldi, Mariana
    Mendina, Mariana
    Chreties, Christian
    [J]. ADVANCES IN COMPUTATIONAL HEAT AND MASS TRANSFER, ICCHMT 2023, VOL 2, 2024, : 595 - 604