Persistence of lower dimensional tori of general types in Hamiltonian systems

被引:53
作者
Li, Y [1 ]
Yi, YF
机构
[1] Jilin Univ, Dept Math, Changchun 130012, Peoples R China
[2] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
关键词
Hamiltonian systems; invariant tori; KAM theory; Melnikov problem; persistence;
D O I
10.1090/S0002-9947-04-03564-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work is a generalization to a result of J. You (1999). We study the persistence of lower dimensional tori of general type in Hamiltonian systems of general normal forms. By introducing a modified linear KAM iterative scheme to deal with small divisors, we shall prove a persistence result, under a Melnikov type of non-resonance condition, which particularly allows multiple and degenerate normal frequencies of the unperturbed lower dimensional tori.
引用
收藏
页码:1565 / 1600
页数:36
相关论文
共 41 条
[1]  
[Anonymous], 1954, DOKL AKAD NAUK SSSR
[2]  
[Anonymous], 1997, AM MATH SOC, DOI DOI 10.1090/trans2/180/18
[3]  
[Anonymous], 1968, SOV MATH DOKL
[4]  
Arnold VI, 1963, USP MAT NAUK, V18, P113
[5]  
BORER H, 1996, NONLINEAR DYNAMICAL, P171
[6]  
Bourgain J, 1997, MATH RES LETT, V4, P445
[7]  
Bourgain J, 1994, IMRN, V11, P475, DOI DOI 10.1155/S1073792894000516
[8]   Nonlinear dynamics of the Frenkel-Kontorova model [J].
Braun, OM ;
Kivshar, YS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 306 (1-2) :1-108
[9]  
BROER H, 1996, LECT NOTES MATH, V1645
[10]  
BROER H, 1990, MEM AM MATH SOC, V83, P13