Reaction Mechanism with Thermodynamic Structural Screening for Electrochemical Hydrogen Evolution on Monolayer 1T′ Phase MoS2

被引:36
|
作者
Chen, Shiqi [1 ]
Chen, Xiaobo [1 ]
Wang, Guangjin [2 ,3 ]
Liu, Lu [1 ]
He, Qiaoqiao [1 ]
Li, Xi-Bo [1 ]
Cui, Ni [1 ]
机构
[1] Jinan Univ, Guangzhou Key Lab Vacuum Coating Technol & New En, Guangdong Prov Engn Technol Res Ctr Vacuum Coatin, Siyuan Lab,Dept Phys, Guangzhou 510632, Guangdong, Peoples R China
[2] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA
[3] Hubei Engn Univ, Coll Chem & Mat Sci, Xiaogan 432000, Peoples R China
基金
中国国家自然科学基金;
关键词
AUGMENTED-WAVE METHOD; DISULFIDE NANOSHEETS; CATALYTIC-ACTIVITY; NB MONOLAYERS; MS2; M; EFFICIENT; NANOPARTICLES; TRANSITION; INTERFACES; OXIDATION;
D O I
10.1021/acs.chemmater.8b02236
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report on a density functional theory (DFT) calculation to determine the reaction pathway and barrier of the hydrogen evolution reaction (HER) at the interface of monolayer 1T' phase MoS2 and water. By screening the interfacial structures with the lowest chemical potential of protons and electrons, key structural characteristics that are important for prediction of reaction mechanism are identified. Under typical reaction conditions of HER, the catalyst surface features a high proton coverage of ca. 37% while the aqueous solution has a relatively low hydronium concentration of no more than ca. 1.8%. This contrast leads to proton desorption from the catalyst surface through a diffusion-assisted Tafel manner, rather than the Heyrovsky manner assumed previously. The result is supported by the agreement of the calculated reaction barrier and surface coverage with those of experimental estimate. In prediction of catalytic activity, hydrogen adsorption energies of reaction intermediates are widely used as the thermodynamic descriptor, while reaction barriers usually serve as kinetic parameters. We suggest that both thermodynamic and kinetic description toward HER should be performed on the premise that the lowest chemical potential of protons and electrons is obtained.
引用
收藏
页码:5404 / 5411
页数:8
相关论文
共 50 条
  • [31] Cobalt and Aluminum Co-Optimized 1T Phase MoS2 with Rich Edges for Robust Hydrogen Evolution Activity
    Jian, Jiahuang
    Kang, Hongjun
    Qiao, Xianshu
    Cui, Kai
    Liu, Yang
    Li, Yang
    Qin, Wei
    Wu, Xiaohong
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2022, 10 (31) : 10203 - 10210
  • [32] Electrochemical nucleation and growth model of MoS2 for hydrogen evolution reaction
    Reddy, Venumbaka Maneesh
    Chandra, Marepally Bhanu
    Gengan, Saravanan
    Duraisamy, Selvakumar
    JOURNAL OF ANALYTICAL SCIENCE AND TECHNOLOGY, 2024, 15 (01)
  • [33] Incorporation of active phase in porous MoS2 for enhanced hydrogen evolution reaction
    Qiao, Wen
    Ma, Tiantian
    Xu, Xiaoyong
    Wu, Liqian
    Yan, Shiming
    Wang, Dunhui
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2020, 31 (05) : 4121 - 4128
  • [34] Phase Transformation of 1T′-MoS2 Induced by Electrochemical Prelithiation for Lithium-Ion Storage
    Hou, Xueyang
    Zhang, Wei
    Peng, Jiaxin
    Zhou, Lijiao
    Wu, Jianchun
    Xie, Keyu
    Fang, Zhao
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (09) : 11292 - 11303
  • [35] 1T′-MoS2, A Promising Candidate for Sensing NOx
    Linghu, Yaoyao
    Wu, Chao
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (16) : 10339 - 10345
  • [36] Transition metal atom doping of the basal plane of MoS2 monolayer nanosheets for electrochemical hydrogen evolution
    Lau, Thomas H. M.
    Lu, XiaoWei
    Kulhavy, Jiri
    Wu, Simson
    Lu, Lilin
    Wu, Tai-Sing
    Kato, Ryuichi
    Foord, John S.
    Soo, Yun-Liang
    Suenaga, Kazu
    Shik Chi Edman Tsang
    CHEMICAL SCIENCE, 2018, 9 (21) : 4769 - 4776
  • [37] Study on Nickel-induced 1T/2H MoS2 nanostructures in realizing efficient electrocatalysts for hydrogen evolution reaction
    Dharman, Ranjith Kumar
    Francis, Bibi Mary
    Ponraj, Joice Sophia
    Dhanabalan, Sathish Chander
    Manavalan, Rajesh Kumar
    Oh, Tae Hwan
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2022, 925
  • [38] Monolayer MoS2 quantum dots as catalysts for efficient hydrogen evolution
    Qiao, Wen
    Yan, Shiming
    Song, Xueyin
    Zhang, Xing
    Sun, Yuan
    Chen, Xing
    Zhong, Wei
    Du, Youwei
    RSC ADVANCES, 2015, 5 (118): : 97696 - 97701
  • [39] Se and O co-insertion induce the transition of MoS2 from 2H to 1T phase for designing high-active electrocatalyst of hydrogen evolution reaction
    Jiang, Ling
    Zhang, Yu-Jie
    Luo, Xiao-Hu
    Yu, Lan
    Li, Huan-Xin
    Li, Yong-Jun
    CHEMICAL ENGINEERING JOURNAL, 2021, 425
  • [40] Mechanism of sulfur vacancies and doping in 1 T'-MoS2 toward the evolution of hydrogen
    Zhou, Jing
    Chen, Junyu
    Chen, Shuxuan
    Wu, Yu
    Cao, Jiamu
    Zhang, Yufeng
    CHEMICAL PHYSICS LETTERS, 2022, 787