Reaction Mechanism with Thermodynamic Structural Screening for Electrochemical Hydrogen Evolution on Monolayer 1T′ Phase MoS2

被引:36
|
作者
Chen, Shiqi [1 ]
Chen, Xiaobo [1 ]
Wang, Guangjin [2 ,3 ]
Liu, Lu [1 ]
He, Qiaoqiao [1 ]
Li, Xi-Bo [1 ]
Cui, Ni [1 ]
机构
[1] Jinan Univ, Guangzhou Key Lab Vacuum Coating Technol & New En, Guangdong Prov Engn Technol Res Ctr Vacuum Coatin, Siyuan Lab,Dept Phys, Guangzhou 510632, Guangdong, Peoples R China
[2] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA
[3] Hubei Engn Univ, Coll Chem & Mat Sci, Xiaogan 432000, Peoples R China
基金
中国国家自然科学基金;
关键词
AUGMENTED-WAVE METHOD; DISULFIDE NANOSHEETS; CATALYTIC-ACTIVITY; NB MONOLAYERS; MS2; M; EFFICIENT; NANOPARTICLES; TRANSITION; INTERFACES; OXIDATION;
D O I
10.1021/acs.chemmater.8b02236
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report on a density functional theory (DFT) calculation to determine the reaction pathway and barrier of the hydrogen evolution reaction (HER) at the interface of monolayer 1T' phase MoS2 and water. By screening the interfacial structures with the lowest chemical potential of protons and electrons, key structural characteristics that are important for prediction of reaction mechanism are identified. Under typical reaction conditions of HER, the catalyst surface features a high proton coverage of ca. 37% while the aqueous solution has a relatively low hydronium concentration of no more than ca. 1.8%. This contrast leads to proton desorption from the catalyst surface through a diffusion-assisted Tafel manner, rather than the Heyrovsky manner assumed previously. The result is supported by the agreement of the calculated reaction barrier and surface coverage with those of experimental estimate. In prediction of catalytic activity, hydrogen adsorption energies of reaction intermediates are widely used as the thermodynamic descriptor, while reaction barriers usually serve as kinetic parameters. We suggest that both thermodynamic and kinetic description toward HER should be performed on the premise that the lowest chemical potential of protons and electrons is obtained.
引用
收藏
页码:5404 / 5411
页数:8
相关论文
共 50 条
  • [1] Layer by Layer Deposition of 1T′-MoS2 for the Hydrogen Evolution Reaction
    Alimohammadi, Farbod
    Yasini, Parisa
    Marshall, Tim
    Attanayake, Nuwan H.
    Borguet, Eric
    Strongin, Daniel R.
    CHEMISTRYSELECT, 2022, 7 (07):
  • [2] Vertical nanosheet array of 1T phase MoS2 for efficient and stable hydrogen evolution
    Liu, Zhipeng
    Zhao, Lei
    Liu, Yuhua
    Gao, Zhichao
    Yuan, Shisheng
    Li, Xiaotian
    Li, Nan
    Miao, Shiding
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 246 : 296 - 302
  • [3] Defects Engineered Monolayer MoS2 for Improved Hydrogen Evolution Reaction
    Ye, Gonglan
    Gong, Yongji
    Lin, Junhao
    Li, Bo
    He, Yongmin
    Pantelides, Sokrates T.
    Zhou, Wu
    Vajtai, Robert
    Ajayan, Pulickel M.
    NANO LETTERS, 2016, 16 (02) : 1097 - 1103
  • [4] Theoretical investigation on the hydrogen evolution reaction mechanism at MoS2 heterostructures: the essential role of the 1T/2H phase interface
    Zhang, Tian
    Zhu, Houyu
    Guo, Chen
    Cao, Shoufu
    Wu, Chi-Man Lawrence
    Wang, Zhaojie
    Lu, Xiaoqing
    CATALYSIS SCIENCE & TECHNOLOGY, 2020, 10 (02) : 458 - 465
  • [5] Boundary activated hydrogen evolution reaction on monolayer MoS2
    Zhu, Jianqi
    Wang, Zhi-Chang
    Dai, Huijia
    Wang, Qinqin
    Yang, Rong
    Yu, Hua
    Liao, Mengzhou
    Zhang, Jing
    Chen, Wei
    Wei, Zheng
    Li, Na
    Du, Luojun
    Shi, Dongxia
    Wang, Wenlong
    Zhang, Lixin
    Jiang, Ying
    Zhang, Guangyu
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [6] Hybrid phase 1T/2H-MoS2with controllable 1T concentration and its promoted hydrogen evolution reaction
    Zhang, Yuxiao
    Kuwahara, Yasutaka
    Mori, Kohsuke
    Louis, Catherine
    Yamashita, Hiromi
    NANOSCALE, 2020, 12 (22) : 11908 - 11915
  • [7] Revealing Hydrogen Spillover on 1T/2H MoS2 Heterostructures for an Enhanced Hydrogen Evolution Reaction by Scanning Electrochemical Microscopy
    Wang, Zhenyu
    Liu, Rujia
    Sun, Tong
    Li, Mengrui
    Ran, Nian
    Wang, Dengchao
    Wang, Zonghua
    ANALYTICAL CHEMISTRY, 2024, 96 (19) : 7618 - 7625
  • [8] Edge terminated and interlayer expanded pristine MoS2 nanostructures with 1T on 2H phase, for enhanced hydrogen evolution reaction
    Saseendran, Swathy B.
    Ashok, Anamika
    Asha, A. S.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (16) : 9579 - 9592
  • [9] 1T Phase Transition Metal Dichalcogenides for Hydrogen Evolution Reaction
    Chang, Liang
    Sun, Zhuxing
    Hu, Yun Hang
    ELECTROCHEMICAL ENERGY REVIEWS, 2021, 4 (02) : 194 - 218
  • [10] Unveiling Active Sites for the Hydrogen Evolution Reaction on Monolayer MoS2
    Zhang, Jing
    Wu, Jingjie
    Guo, Hua
    Chen, Weibing
    Yuan, Jiangtan
    Martinez, Ulises
    Gupta, Gautam
    Mohite, Aditya
    Ajayan, Pulickel M.
    Lou, Jun
    ADVANCED MATERIALS, 2017, 29 (42)