Megastability: Coexistence of a countable infinity of nested attractors in a periodically-forced oscillator with spatially-periodic damping

被引:178
作者
Sprott, Julien C. [1 ]
Jafari, Sajad [2 ]
Khalaf, Abdul Jalil M. [3 ]
Kapitaniak, Tomasz [4 ]
机构
[1] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA
[2] Amirkabir Univ Technol, Dept Biomed Engn, Tehran 158754413, Iran
[3] Univ Kufa, Fac Comp Sci & Math, Dept Math, Najaf, Iraq
[4] Lodz Univ Technol, Div Dynam, Stefanowskiego 1-15, PL-90924 Lodz, Poland
关键词
MULTISCROLL CHAOTIC ATTRACTORS; HYPERCHAOS TRANSITION; HIDDEN ATTRACTORS; SCROLL ATTRACTORS; SYSTEM; MULTISTABILITY; FLOWS; SYNCHRONIZATION; DRIVEN;
D O I
10.1140/epjst/e2017-70037-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we describe a periodically-forced oscillator with spatially-periodic damping. This system has an infinite number of coexisting nested attractors, including limit cycles, attracting tori, and strange attractors. We are aware of no similar example in the literature.
引用
收藏
页码:1979 / 1985
页数:7
相关论文
共 76 条
[1]  
[Anonymous], 2000, Int. J. Chaos Theory Appl.
[2]   Algorithms for Finding Hidden Oscillations in Nonlinear Systems. The Aizerman and Kalman Conjectures and Chua's Circuits [J].
Bragin, V. O. ;
Vagaitsev, V. I. ;
Kuznetsov, N. V. ;
Leonov, G. A. .
JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 2011, 50 (04) :511-543
[3]   A search for the simplest chaotic partial differential equation [J].
Brummitt, Charles D. ;
Sprott, J. C. .
PHYSICS LETTERS A, 2009, 373 (31) :2717-2721
[4]  
Cartwright ML., 1945, J LOND MATH SOC, V20, P180, DOI [DOI 10.1112/JLMS/S1-20.3.180, 10.1112/jlms/s1-20.3.180]
[5]   A new Lorenz-type hyperchaotic system with a curve of equilibria [J].
Chen, Yuming ;
Yang, Qigui .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2015, 112 :40-55
[6]   MULTISTABILITY AND RARE ATTRACTORS IN VAN DER POL-DUFFING OSCILLATOR [J].
Chudzik, A. ;
Perlikowski, P. ;
Stefanski, A. ;
Kapitaniak, T .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2011, 21 (07) :1907-1912
[7]   Topological analysis of chaotic dynamical systems [J].
Gilmore, R .
REVIEWS OF MODERN PHYSICS, 1998, 70 (04) :1455-1529
[8]  
Gilmore R., 2012, TOPOLOGY CHAOS ALICE
[9]   New class of chaotic systems with circular equilibrium [J].
Gotthans, Tomas ;
Petrzela, Jiri .
NONLINEAR DYNAMICS, 2015, 81 (03) :1143-1149
[10]   Simplest driven conservative chaotic oscillator [J].
Gottlieb, HPW ;
Sprott, JC .
PHYSICS LETTERS A, 2001, 291 (06) :385-388