Two-dimensional extension of the reservoir technique for some linear advection systems

被引:4
作者
Alouges, Francois
Le Coq, Gerard
Lorin, Emmanuel [1 ]
机构
[1] Univ Orsay, Dept Math, F-91405 Orsay, France
[2] Ecole Normale Super, Ctr Math & Leurs Applicat, F-94235 Cachan, France
[3] Univ Montreal, Ctr Rech Math, Montreal, PQ H3T 1J4, Canada
关键词
multidimensional convection; finite volume schemes; reservoirs; numerical diffusion;
D O I
10.1007/s10915-006-9115-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present an extension of the reservoir technique (see, [Alouges et al., Submitted; Alouges et al.(2002a), In: Finite volumes for complex applications, III, pp. 247-254, Marseille; Alouges et al.(2002b), C. R. Math. Acad. Sci. Paris, 335(7), 627-632.]) for two-dimensional advection equations with non-constant velocities. The purpose of this work is to make decrease the numerical diffusion of finite volume schemes, correcting the numerical directions of propagation, using a so-called corrector vector combined with the reservoirs. We then introduce an object called velocities rose in order to minimize the algorithmic complexity of this method.
引用
收藏
页码:419 / 458
页数:40
相关论文
共 19 条
[1]  
Alouges F, 2002, CR MATH, V335, P627
[2]  
ALOUGES F, 2002, FINITE VOLUMES COMPL, V3, P247
[3]  
ALOUGES F, 200516 CMLA
[4]   On WAF-type schemes for multidimensional hyperbolic conservation laws [J].
Billett, SJ ;
Toro, EF .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 130 (01) :1-24
[5]   An antidiffusive entropy scheme for monotone scalar conservation laws [J].
Bouchut, F .
JOURNAL OF SCIENTIFIC COMPUTING, 2004, 21 (01) :1-30
[6]   Discontinuous Galerkin methods - Plenary lecture presented at the 80th Annual GAMM Conference, Augsburg, 25-28 March 2002 [J].
Cockburn, B .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2003, 83 (11) :731-754
[7]   A front-tracking/front-capturing method for the simulation of 3D multi-fluid flows with free surfaces [J].
de Sousa, FS ;
Mangiavacchi, N ;
Nonato, LG ;
Castelo, A ;
Tomé, MF ;
Ferreira, VG ;
Cuminato, JA ;
McKee, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 198 (02) :469-499
[8]   A non-linear anti-diffusive scheme for the linens advection equation [J].
Després, B ;
Lagoutière, F .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (10) :939-943
[9]  
DESPRES B, 2002, J SCI COMPUT, V16, P479
[10]   ORDINARY DIFFERENTIAL-EQUATIONS, TRANSPORT-THEORY AND SOBOLEV SPACES [J].
DIPERNA, RJ ;
LIONS, PL .
INVENTIONES MATHEMATICAE, 1989, 98 (03) :511-547