A finite element semi-Lagrangian explicit Runge-Kutta-Chebyshev method for convection dominated reaction-diffusion problems

被引:20
作者
Bermejo, R
El Amrani, M
机构
[1] Univ Castilla La Mancha, Fac Ciencias Ambientales, Dpto Matemat, Toledo 45071, Spain
[2] Univ Complutense Madrid, Fac CC Matemat, Dept Matemat Aplicada, E-28040 Madrid, Spain
关键词
D O I
10.1016/S0377-0427(02)00746-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Explicit Runge-Kutta-Chebyshev methods have proved to be efficient for reaction-diffusion problems of moderate stiffness. In this paper, we extend such an efficiency to convection-dominated-reaction-diffusion problems by giving a formulation of these methods in a semi-Lagrangian framework, using C-0-finite elements of degree m greater than or equal to 2 as the space discretization method. We also study the convergence in the L-2-norm of the methods proposed in this paper. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:27 / 61
页数:35
相关论文
共 16 条