The rate of convergence of finite-difference approximations for parabolic Bellman equations with Lipschitz coefficients in cylindrical domains

被引:31
作者
Dong, Hongjie [1 ]
Krylov, Nicolai V.
机构
[1] Univ Chicago, Dept Math, 5734 S Univ Ave, Chicago, IL 60637 USA
[2] Univ Minnesota, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
finite-difference approximations; Bellman equations; fully non-linear equations;
D O I
10.1007/s00245-007-0879-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider degenerate parabolic and elliptic fully nonlinear Bellman equations with Lipschitz coefficients in domains. Error bounds of order h(1/2) in the sup norm for certain types of finite-difference schemes are obtained.
引用
收藏
页码:37 / 66
页数:30
相关论文
共 26 条
[1]  
Bardi M, 1997, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Foundations and Applications, DOI [10.1007/978-0-8176-4755-1, DOI 10.1007/978-0-8176-4755-1]
[2]  
Barles G., 1991, Asymptotic Analysis, V4, P271
[3]   Error bounds for monotone approximation schemes for Hamilton-Jacobi-Bellma equations [J].
Barles, G ;
Jakobsen, ER .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (02) :540-558
[4]  
BARLES G, 2002, M2AN MATH MODEL NUME, V36, P33
[5]  
Bers L, 1964, PARTIAL DIFFERENTIAL
[6]   AN APPROXIMATION SCHEME FOR THE OPTIMAL-CONTROL OF DIFFUSION-PROCESSES [J].
CAMILLI, F ;
FALCONE, M .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1995, 29 (01) :97-122
[7]   Convergent difference schemes for nonlinear parabolic equations and mean curvature motion [J].
Crandall, MG ;
Lions, PL .
NUMERISCHE MATHEMATIK, 1996, 75 (01) :17-41
[8]  
Deckelnick K., 2000, Interfaces Free Bound, V2, P117, DOI DOI 10.4171/IFB/15
[9]  
DONG H, 2006, PETERSBURG MATH J, V17, P295
[10]  
DONG HJ, 2005, ELECTRON J DIFFER EQ, P1