New non-arithmetic complex hyperbolic lattices

被引:28
作者
Deraux, Martin [1 ]
Parker, John R. [2 ]
Paupert, Julien [3 ]
机构
[1] Univ Grenoble 1, Inst Fourier, F-38402 St Martin Dheres, France
[2] Univ Durham, Dept Math Sci, Durham, England
[3] Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ USA
关键词
FAKE PROJECTIVE-PLANES; TRIANGLE GROUPS; MODULI SPACE; GEOMETRY; SUPERRIGIDITY; MONODROMY; DOMAINS;
D O I
10.1007/s00222-015-0600-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We produce a family of new, non-arithmetic lattices in PU(2, 1). All previously known examples were commensurable with lattices constructed by Picard, Mostow, and Deligne-Mostow, and fell into nine commensurability classes. Our groups produce five new distinct commensurability classes. Most of the techniques are completely general, and provide efficient geometric and computational tools for constructing fundamental domains for discrete groups acting on the complex hyperbolic plane.
引用
收藏
页码:681 / 771
页数:91
相关论文
共 49 条
[1]   The complex hyperbolic geometry of the moduli space of cubic surfaces [J].
Allcock, D ;
Carlson, JA ;
Toledo, D .
JOURNAL OF ALGEBRAIC GEOMETRY, 2002, 11 (04) :659-724
[2]  
[Anonymous], ANN MATH STUDIES
[3]  
[Anonymous], 1992, Inst. Hautes Etudes Sci. Publ. Math, DOI DOI 10.1007/BF02699433
[4]  
[Anonymous], 1999, OXFORD MATH MONOGRAP
[5]  
Barthel G., 1987, ASPECTS MATH D, VD4
[6]   Enumeration of the 50 fake projective planes [J].
Cartwright, Donald I. ;
Steger, Tim .
COMPTES RENDUS MATHEMATIQUE, 2010, 348 (1-2) :11-13
[7]  
Cohen H, 1993, GRADUATE TEXTS MATH, V138, DOI DOI 10.1007/978-3-662-02945-9
[8]  
CONWAY A., 1976, Acta Arith., V30, P229, DOI DOI 10.4064/AA-30-3-229-240
[9]   ARCHIMEDEAN SUPERRIGIDITY AND HYPERBOLIC GEOMETRY [J].
CORLETTE, K .
ANNALS OF MATHEMATICS, 1992, 135 (01) :165-182
[10]  
DELIGNE P, 1986, PUBL MATH-PARIS, P5