The twisted conjugacy problem for endomorphisms of polycyclic groups

被引:8
作者
Roman'kov, V. [1 ]
机构
[1] Omsk State Dostoevskii Univ Omsk, Omsk, Russia
关键词
D O I
10.1515/JGT.2009.054
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An algorithm is constructed that, when given an explicit presentation of a polycyclic group G, decides for any endomorphism psi is an element of End(G) and any pair of elements u, v is an element of G, whether or not the equation (x psi)u = vx has a solution x is an element of G. Thus it is shown that the problem of the title is decidable. Also we present an algorithm that produces a finite set of generators of the subgroup Fix(psi)(G) <= G of all psi-invariant elements of G.
引用
收藏
页码:355 / 364
页数:10
相关论文
共 26 条
[1]   THE ALGORITHMIC THEORY OF FINITELY GENERATED METABELIAN-GROUPS [J].
BAUMSLAG, G ;
CANNONITO, FB ;
ROBINSON, DJS .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 344 (02) :629-648
[2]   CONJUGACY IN NILPOTENT GROUPS [J].
BLACKBURN, N .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 16 (01) :143-+
[3]  
FELSHTYN A, 2006, TWISTED CONJUGACY SE
[4]   CONJUGATE SEPARABILITY IN POLYCYCLIC GROUPS [J].
FORMANEK, E .
JOURNAL OF ALGEBRA, 1976, 42 (01) :1-10
[5]   FREE DIFFERENTIAL CALCULUS .5. THE ALEXANDER MATRICES RE-EXAMINED [J].
FOX, RH .
ANNALS OF MATHEMATICS, 1960, 71 (03) :408-422
[6]  
Fuchs L., 1973, Infinite Abelian Groups, VII
[7]  
Fuchs L., 1973, INFINITE ABELIAN GRO, V1
[8]  
GUPTA N, 1987, CONT MATH AM MATH SO, V66
[9]  
Hall P., 1954, Proc. London Math. Soc., V1, P419, DOI [10.1112/plms/s3-4.1.419, DOI 10.1112/PLMS/S3-4.1.419]
[10]  
Hall P., 1959, P LOND MATH SOC, V3, P595, DOI DOI 10.1112/PLMS/S3-9.4.595