Wave reversal mode: A new magnetization reversal mechanism in magnetic nanotubes

被引:10
作者
Raviolo, Sofia [1 ,2 ]
Arciniegas Jaimes, Diana M. [1 ]
Bajales, Noelia [1 ,2 ]
Escrig, Juan [3 ,4 ]
机构
[1] Consejo Nacl Invest Cient & Tecn, IFEG, RA-5000 Cordoba, Argentina
[2] Univ Nacl Cordoba, FAMAF, RA-5000 Cordoba, Argentina
[3] Univ Santiago Chile, Dept Fis, USACH, Santiago 9170124, Chile
[4] Ctr Dev Nanosci & Nanotechnol CEDENNA, Santiago 9170124, Chile
关键词
Magnetic nanotubes; Magnetization reversal mode; Micromagnetic simulations;
D O I
10.1016/j.jmmm.2019.165944
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We have investigated the magnetic properties of 14 nm thick and 1 mu m long nickel and permalloy nanotubes with external diameters of 40 and 100 nm as a function of the angle theta at which the external magnetic field is applied. Our results show that the coercivity of 40 nm diameter nickel nanotubes follows a non-monotonic behavior from theta = 0 degrees up to theta = 60 degrees, while that corresponding to permalloy displays an increasing monotonic trend at the same angular range. At theta = 90 degrees, both materials evidence a sharp drop of the coercivity to zero, indicating that the reversal mechanism has changed to a pseudo-coherent rotation. On the other hand, nickel and permalloy nanotubes with 100 nm in diameter exhibit a similar angular dependence of the coercivity, reversing their magnetization through the nucleation and propagation of vortex domain walls for angles lower than 75 degrees. For theta = 90 degrees, a novel striking mechanism, the wave reversal mode (W), arises. This phenomenon leads to an unusual S-type shape in the hysteresis curves at those given parameters, which is until now an effect that has not been reported for these nanostructures.
引用
收藏
页数:5
相关论文
共 24 条
[1]   Experimental evidence for an angular dependent transition of magnetization reversal modes in magnetic nanotubes [J].
Albrecht, Ole ;
Zierold, Robert ;
Allende, Sebastian ;
Escrig, Juan ;
Patzig, Christian ;
Rauschenbach, Bernd ;
Nielsch, Kornelius ;
Goerlitz, Detlef .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (09)
[2]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[3]   A biosensor based on magnetoresistance technology [J].
Baselt, DR ;
Lee, GU ;
Natesan, M ;
Metzger, SW ;
Sheehan, PE ;
Colton, RJ .
BIOSENSORS & BIOELECTRONICS, 1998, 13 (7-8) :731-739
[4]   Polyamido amine (PAMAM)-grafted magnetic nanotubes as emerging platforms for the delivery and sustained release of silibinin [J].
Chavez, Gloria ;
Campos, Cristian H. ;
Jimenez, Veronica A. ;
Torres, Cecilia C. ;
Diaz, Carola ;
Salas, Gorka ;
Guzman, Leonardo ;
Alderete, Joel B. .
JOURNAL OF MATERIALS SCIENCE, 2017, 52 (16) :9269-9281
[5]   Magnetically tunable iron oxide nanotubes for multifunctional biomedical applications [J].
Das, Raja ;
Cardarelli, Jason A. ;
Manh-Huong Phan ;
Srikanth, Hariharan .
JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 789 :323-329
[6]  
Donahue M. J., 1999, TECHNICAL REPORT, DOI DOI 10.6028/NIST.IR.6376
[7]   Angular dependence of coercivity in magnetic nanotubes [J].
Escrig, J. ;
Daub, M. ;
Landeros, P. ;
Nielsch, K. ;
Altbir, D. .
NANOTECHNOLOGY, 2007, 18 (44)
[8]   Effect of anisotropy in magnetic nanotubes [J].
Escrig, J. ;
Landeros, P. ;
Altbir, D. ;
Vogel, E. E. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 310 (02) :2448-2450
[9]   Phase diagrams of magnetic nanotubes [J].
Escrig, J. ;
Landeros, P. ;
Altbir, D. ;
Vogel, E. E. ;
Vargas, P. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 308 (02) :233-237
[10]   Crossover between two different magnetization reversal modes in arrays of iron oxide nanotubes [J].
Escrig, J. ;
Bachmann, J. ;
Jing, J. ;
Daub, M. ;
Altbir, D. ;
Nielsch, K. .
PHYSICAL REVIEW B, 2008, 77 (21)