Clinical use of machine learning-based pathomics signature for diagnosis and survival prediction of bladder cancer

被引:54
作者
Chen, Siteng [1 ]
Jiang, Liren [2 ]
Zheng, Xinyi [3 ]
Shao, Jialiang [1 ]
Wang, Tao [1 ]
Zhang, Encheng [1 ]
Gao, Feng [2 ]
Wang, Xiang [1 ]
Zheng, Junhua [1 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai Gen Hosp, Sch Med, Dept Urol, 100 Haining Rd, Shanghai 200080, Peoples R China
[2] Shanghai Jiao Tong Univ, Shanghai Gen Hosp, Sch Med, Dept Pathol, 100 Haining Rd, Shanghai 200080, Peoples R China
[3] Fudan Univ, Huashan Hosp, Dept Pharm, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
bladder cancer; diagnosis; machine learning; pathomics; prognosis; REGULARIZATION PATHS; NEURAL-NETWORKS; IMAGE-ANALYSIS; RADIOMICS; MODEL;
D O I
10.1111/cas.14927
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Traditional histopathology performed by pathologists by the naked eye is insufficient for accurate and efficient diagnosis of bladder cancer (BCa). We collected 643 H&E-stained BCa images from Shanghai General Hospital and The Cancer Genome Atlas (TCGA). We constructed and cross-verified automatic diagnosis and prognosis models by performing a machine learning algorithm based on pathomics data. Our study indicated that high diagnostic efficiency of the machine learning-based diagnosis model was observed in patients with BCa, with area under the curve (AUC) values of 96.3%, 89.2%, and 94.1% in the training cohort, test cohort, and external validation cohort, respectively. Our diagnosis model also performed well in distinguishing patients with BCa from patients with glandular cystitis, with an AUC value of 93.4% in the General cohort. Significant differences were found in overall survival in TCGA cohort (hazard ratio (HR) = 2.09, 95% confidence interval (CI): 1.56-2.81, P < .0001) and the General cohort (HR = 5.32, 95% CI: 2.95-9.59, P < .0001) comparing patients with BCa of high risk vs low risk stratified by risk score, which was proved to be an independent prognostic factor for BCa. The integration nomogram based on our risk score and clinicopathologic characters displayed higher prediction accuracy than current tumor stage/grade systems, with AUC values of 77.7%, 83.8%, and 81.3% for 1-, 3-, and 5-y overall survival prediction of patients with BCa. However, prospective studies are still needed for further verifications.
引用
收藏
页码:2905 / 2914
页数:10
相关论文
共 22 条
[1]   Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer [J].
Bejnordi, Babak Ehteshami ;
Veta, Mitko ;
van Diest, Paul Johannes ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Litjens, Geert ;
van der Laak, Jeroen A. W. M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22) :2199-2210
[2]   Deep neural networks are superior to dermatologists in melanoma image classification [J].
Brinker, Titus J. ;
Hekler, Achim ;
Enk, Alexander H. ;
Berking, Carola ;
Haferkamp, Sebastian ;
Hauschild, Axel ;
Weichenthal, Michael ;
Klode, Joachim ;
Schadendorf, Dirk ;
Holland-Letz, Tim ;
von Kalle, Christof ;
Froehling, Stefan ;
Schilling, Bastian ;
Utikal, Jochen S. .
EUROPEAN JOURNAL OF CANCER, 2019, 119 :11-17
[3]   Development and interpretation of a pathomics-based model for the prediction of microsatellite instability in Colorectal Cancer [J].
Cao, Rui ;
Yang, Fan ;
Ma, Si-Cong ;
Liu, Li ;
Zhao, Yu ;
Li, Yan ;
Wu, De-Hua ;
Wang, Tongxin ;
Lu, Wei-Jia ;
Cai, Wei-Jing ;
Zhu, Hong-Bo ;
Guo, Xue-Jun ;
Lu, Yu-Wen ;
Kuang, Jun-Jie ;
Huan, Wen-Jing ;
Tang, Wei-Min ;
Huang, Kun ;
Huang, Junzhou ;
Yao, Jianhua ;
Dong, Zhong-Yi .
THERANOSTICS, 2020, 10 (24) :11080-11091
[4]   CellProfiler: image analysis software for identifying and quantifying cell phenotypes [J].
Carpenter, Anne E. ;
Jones, Thouis Ray ;
Lamprecht, Michael R. ;
Clarke, Colin ;
Kang, In Han ;
Friman, Ola ;
Guertin, David A. ;
Chang, Joo Han ;
Lindquist, Robert A. ;
Moffat, Jason ;
Golland, Polina ;
Sabatini, David M. .
GENOME BIOLOGY, 2006, 7 (10)
[5]   NCCN Guidelines® Insights Bladder Cancer, Version 5.2018 Featured Updates to the NCCN Guidelines [J].
Flaig, Thomas W. ;
Spiess, Philippe E. ;
Agarwal, Neeraj ;
Bangs, Rick ;
Boorjian, Stephen A. ;
Buyyounouski, Mark K. ;
Downs, Tracy M. ;
Efstathiou, Jason A. ;
Friedlander, Terence ;
Greenberg, Richard E. ;
Guru, Khurshid A. ;
Noah Hahn ;
Herr, Harry W. ;
Hoimes, Christopher ;
Inman, Brant A. ;
Jimbo, Masahito ;
Kader, A. Karim ;
Lele, Subodh M. ;
Meeks, Joshua J. ;
Michalski, Jeff ;
Montgomery, Jeffrey S. ;
Pagliaro, Lance C. ;
Pal, Sumanta K. ;
Patterson, Anthony ;
Petrylak, Daniel P. ;
Plimack, Elizabeth R. ;
Pohar, Kamal S. ;
Porter, Michael P. ;
Preston, Mark A. ;
Sexton, Wade J. ;
Siefker-Radtke, Arlene O. ;
Tward, Jonathan ;
Wile, Geoffrey ;
Johnson-Chilla, Alyse ;
Dwyer, Mary A. ;
Gurski, Lisa A. .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2018, 16 (09) :1041-1053
[6]   Regularization Paths for Generalized Linear Models via Coordinate Descent [J].
Friedman, Jerome ;
Hastie, Trevor ;
Tibshirani, Rob .
JOURNAL OF STATISTICAL SOFTWARE, 2010, 33 (01) :1-22
[7]   Radiomics: Images Are More than Pictures, They Are Data [J].
Gillies, Robert J. ;
Kinahan, Paul E. ;
Hricak, Hedvig .
RADIOLOGY, 2016, 278 (02) :563-577
[8]   The 2016 WHO Classification of Tumours of the Urinary System and Male Genital Organs-Part B: Prostate and Bladder Tumours [J].
Humphrey, Peter A. ;
Moch, Holger ;
Cubilla, Antonio L. ;
Ulbright, Thomas M. ;
Reuter, Victor E. .
EUROPEAN UROLOGY, 2016, 70 (01) :106-119
[9]   Development and Validation of a Deep Learning CT Signature to Predict Survival and Chemotherapy Benefit in Gastric Cancer [J].
Jiang, Yuming ;
Jin, Cheng ;
Yu, Heng ;
Wu, Jia ;
Chen, Chuanli ;
Yuan, Qingyu ;
Huang, Weicai ;
Hu, Yanfeng ;
Xu, Yikai ;
Zhou, Zhiwei ;
Fisher, George A., Jr. ;
Li, Guoxin ;
Li, Ruijiang .
ANNALS OF SURGERY, 2021, 274 (06) :E1153-E1161
[10]   Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software [J].
Kamentsky, Lee ;
Jones, Thouis R. ;
Fraser, Adam ;
Bray, Mark-Anthony ;
Logan, David J. ;
Madden, Katherine L. ;
Ljosa, Vebjorn ;
Rueden, Curtis ;
Eliceiri, Kevin W. ;
Carpenter, Anne E. .
BIOINFORMATICS, 2011, 27 (08) :1179-1180