Note on reducibility of parabolic induction for Hermitian quaternionic groups over p-adic fields

被引:0
作者
Grbac, Neven [1 ]
Pecek, Nevena Jurcevic [1 ]
机构
[1] Univ Rijeka, Dept Math, Radmile Matejcic 2, HR-51000 Rijeka, Croatia
关键词
Hermitian quaternionic groups; parabolically induced representations; reducibility; Jacquet modules; structural formula; R-groups; INDUCED REPRESENTATIONS; CLASSIFICATION; SERIES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study reducibility of a certain class of parabolically induced representations of p-adic Hermitian quaternionic groups. We use Jacquet modules techniques and the theory of R-groups to extend reducibility results of Tadic for split classical groups to the case of an arbitrary Hermitian quaternionic group.
引用
收藏
页码:181 / 196
页数:16
相关论文
共 26 条
[1]  
[Anonymous], SFB GEOMETRIE ANAL
[2]  
[Anonymous], INTRO THEORY A UNPUB
[4]  
BERNSTEIN IN, 1977, ANN SCI ECOLE NORM S, V10, P441
[5]  
Borel A., 2000, Mathematical Surveys and Monographs
[6]  
Deligne P., 1984, Representations of Reductive Groups Over a Local Field, P33
[7]   REDUCIBILITY OF INDUCED REPRESENTATIONS FOR SP(2N) AND SO(N) [J].
GOLDBERG, D .
AMERICAN JOURNAL OF MATHEMATICS, 1994, 116 (05) :1101-1151
[8]  
Hanzer M., 2004, Glasnik Matematicki, Serija III, V39, P31, DOI 10.3336/gm.39.1.04
[9]   The unitary dual of the hermitian quaternionic group of split rank 2 [J].
Hanzer, Marcela .
PACIFIC JOURNAL OF MATHEMATICS, 2006, 226 (02) :353-388
[10]   INTERTWINING OPERATORS FOR SEMISIMPLE GROUPS [J].
KNAPP, AW ;
STEIN, EM .
ANNALS OF MATHEMATICS, 1971, 93 (03) :489-&