Matrix inequalities with applications to the theory of iterated kernels

被引:0
作者
Banks, W
Harcharras, A
Neuwirth, S
Ricard, E
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[2] Univ Franche Comte, Math Lab, F-25030 Besancon, France
[3] Univ Paris 06, Equipe Anal, F-75252 Paris 05, France
基金
美国国家科学基金会;
关键词
matrix inequality; iterated kernel;
D O I
10.1016/S0024-3795(02)00517-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For an m x n matrix A with nonnegative real entries, Atkinson, Moran and Watterson proved the inequality s(A)(3) less than or equal to mns(AA(t)A), where A(t) is the transpose of A, and s((.)) is the sum of the entries. We extend this result to finite products of the form AA(t)AA(t)...A or AA(t)AA(t)...A(t) and give some applications to the theory of iterated kernels. (C) 2002 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:275 / 286
页数:12
相关论文
共 4 条
[1]  
[Anonymous], 1959, AM MATH MON, DOI DOI 10.1080/00029890.1959.11989387
[2]  
ATKINSON FV, 1960, QUART J MATH OXFORD, V11, P137, DOI 10.1093/qmath/11.1.137
[3]  
Beesack P. R., 1969, U BEOGRAD PUBL EL MF, P11
[4]   CHANGE IN MEAN VIABILITY AT A MULTIALLELIC LOCUS IN A POPULATION UNDER RANDOM MATING [J].
MANDEL, SPH ;
HUGHES, IM .
NATURE, 1958, 182 (4627) :63-64