Charge Dynamics in TiO2/MXene Composites

被引:29
作者
Debow, Shaun [1 ]
Zhang, Tong [2 ,3 ,4 ,5 ]
Liu, Xusheng [2 ,6 ]
Song, Fuzhan [2 ]
Qian, Yuqin [2 ]
Han, Jian [2 ,7 ]
Maleski, Kathleen [8 ,9 ]
Zander, Zachary B. [1 ]
Creasy, William R. [10 ]
Kuhn, Danielle L. [1 ]
Gogotsi, Yury [8 ,9 ]
DeLacy, Brendan G. [1 ]
Rao, Yi [2 ]
机构
[1] US Army Combat Capabil Dev Command Chem Biol Ctr, Res & Technol Directorate, Aberdeen Proving Ground, MD 21010 USA
[2] Utah State Univ, Dept Chem & Biochem, Logan, UT 84322 USA
[3] Chinese Acad Sci, Inst Chem, Beijing Natl Lab Mol Sci, Beijing 100190, Peoples R China
[4] Chinese Acad Sci, Inst Chem, State Key Lab Mol React Dynam, Beijing 100190, Peoples R China
[5] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[6] Univ Elect Sci, Chongqin 100049, Peoples R China
[7] Nanjing Univ Sci & Technol, Sch Chem Engn, Nanjing 210094, Peoples R China
[8] Drexel Univ, AJ Drexel Nanomat Inst, Philadelphia, PA 19104 USA
[9] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA
[10] Leidos Corp Supporting US Army CCDC CBC, Aberdeen Proving Ground, MD 21010 USA
关键词
TITANIUM CARBIDE MXENE; HOT-ELECTRON TRANSFER; PLASMON; TI3C2; NANOFIBERS; INTERFACE; GRAPHENE; PHOTODETECTOR; GENERATION; HYBRIDS;
D O I
10.1021/acs.jpcc.1c01543
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Metal-semiconductor heterostructures are believed to improve hot-electron injection efficiency and influence the photocatalytic performance. Understanding the carrier dynamics at the heterostructure is essential for designing more efficient photocatalysts. Herein, we fabricated a Schottky heterostructure using two-dimensional (2D) titanium carbide MXene (Ti3C2Tx, where T-x stands for surface terminations, such as O or OH) and a TiO2 semiconductor and examined the carrier dynamics at the heterostructure using time-resolved infrared techniques. MXene exhibits robust metallic properties in terms of photoconductivity comparable to those of high-quality 2D graphene materials. The photoexcitation of MXene greatly increases the scattering rate and leads to a decreased photoconductivity. When Ti3C2Tx comes in close contact with the TiO2 semiconductor, band bending leads to the formation of a Schottky barrier at the contact junction. In this plasmonic TiO2/Ti3C2Tx heterostructure, hot electrons are excited only from MXene upon photon absorption at wavelengths far below the TiO2 band gap. Under these conditions, the Ti3C2Tx-generated plasmonic electrons are transferred into the conduction band of the TiO2 semiconductor over the Schottky barrier with a fast time constant of 180 fs. The strong electronic coupling between oxygen-terminated Ti3C2Tx and TiO2 is due to their proximity, and the resulting interactions are likely responsible for the fast electron transfer in the composites. Our results demonstrate a potential of 2D MXene materials in plasmonic applications and provide new insights into the design of MXene-based photocatalysts.
引用
收藏
页码:10473 / 10482
页数:10
相关论文
共 71 条
[1]   Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2TX MXene) [J].
Alhabeb, Mohamed ;
Maleski, Kathleen ;
Anasori, Babak ;
Lelyukh, Pavel ;
Clark, Leah ;
Sin, Saleesha ;
Gogotsi, Yury .
CHEMISTRY OF MATERIALS, 2017, 29 (18) :7633-7644
[2]  
Anasori B., 2019, 2D METAL CARBIDES NI, DOI [10.1007/978-3-030-19026-2_4, DOI 10.1007/978-3-030-19026-2_4]
[3]   Parameters affecting electron injection dynamics from ruthenium dyes to titanium dioxide nanocrystalline thin film [J].
Asbury, JB ;
Anderson, NA ;
Hao, EC ;
Ai, X ;
Lian, TQ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (30) :7376-7386
[4]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/nmat2629, 10.1038/NMAT2629]
[5]  
Brongersma ML, 2015, NAT NANOTECHNOL, V10, P25, DOI [10.1038/nnano.2014.311, 10.1038/NNANO.2014.311]
[6]   Ag3PO4/Ti3C2 MXene interface materials as a Schottky catalyst with enhanced photocatalytic activities and anti-photocorrosion performance [J].
Cai, Tao ;
Wang, Longlu ;
Liu, Yutang ;
Zhang, Shuqu ;
Dong, Wanyue ;
Chen, Hui ;
Yi, Xuanying ;
Yuan, Jili ;
Xia, Xinnian ;
Liu, Chengbin ;
Luo, Shenglian .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2018, 239 :545-554
[7]   2D/2D Heterojunction of Ultrathin MXene/Bi2WO6 Nanosheets for Improved Photocatalytic CO2 Reduction [J].
Cao, Shaowen ;
Shen, Baojia ;
Tong, Tong ;
Fu, Junwei ;
Yu, Jiaguo .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (21)
[8]   Highly Broadband Absorber Using Plasmonic Titanium Carbide (MXene) [J].
Chaudhuri, Krishnakali ;
Alhabeb, Mohamed ;
Wang, Zhuoxian ;
Shalaev, Vladimir M. ;
Gogotsi, Yury ;
Boltasseva, Alexandra .
ACS PHOTONICS, 2018, 5 (03) :1115-1122
[9]   Bio-inspired transparent MXene electrodes for flexible UV photodetectors [J].
Chen, Jiaxin ;
Li, Ziliang ;
Ni, Fenglou ;
Ouyang, Weixin ;
Fang, Xiaosheng .
MATERIALS HORIZONS, 2020, 7 (07) :1828-1833
[10]   In Situ Formation of Multiple Schottky Barriers in a Ti3C2MXene Film and its Application in Highly Sensitive Gas Sensors [J].
Choi, Junghoon ;
Kim, Yong-Jae ;
Cho, Soo-Yeon ;
Park, Kangho ;
Kang, Hohyung ;
Kim, Seon Joon ;
Jung, Hee-Tae .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (40)