Constant Current/Voltage Charging Operation for Series-Series and Series-Parallel Compensated Wireless Power Transfer Systems Employing Primary-Side Controller

被引:247
作者
Song, Kai [1 ]
Li, Zhenjie [1 ]
Jiang, Jinhai [1 ]
Zhu, Chunbo [1 ]
机构
[1] Harbin Inst Technol, Sch Elect Engn & Automat, Harbin 150001, Heilongjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Constant current/voltage (CC/CV) charging; load identification; phase shift control; series-series (SS) and series-parallel (SP) compensation; wireless power transfer (WPT); ELECTRIC VEHICLE APPLICATIONS; DESIGN; EFFICIENCY; INDUCTANCE; CONVERTER;
D O I
10.1109/TPEL.2017.2767099
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a new control technique, which only employs the primary-side controller and load identification approach to adjust charging voltage/current for series-series (SS) and series-parallel (SP) compensated wireless power transfer (WPT) systems. The advantages are that dual-side wireless communication for real-time charging current/voltage adjustment is avoided as well as it is suitable for different charging modes, e.g., constant voltage (CV) and constant current (CC) charging defined by the battery charging profile. The load identification approach, which utilizes reflected impedance theory and quadrature transformation algorithm for calculating the active power, is proposed to estimate the equivalent load resistance of battery. Then, the CV/CC charging for both SS and SP compensation are achieved by the PI-controlled phase-shift H-bridge inverter. The simulation and experimental results validate the feasibility of proposed control method. During the CC charging, 3.01 and 3.03 A for SS and SP compensation with the error of 1.2% and 1.4% are achieved. During the CV charging, 25.8 and 25.7 V for SS and SP compensation with the error of 1.1% and 1.3% are realized. The proposed method improves the performance of both SS- and SP-compensated WPT systems to be more suitable for the applications that require compact and lightweight receiver.
引用
收藏
页码:8065 / 8080
页数:16
相关论文
共 45 条
[1]  
[Anonymous], 2010, P 2010 IEEE INT C SU
[2]   A Wireless Charging System Applying Phase-Shift and Amplitude Control to Maximize Efficiency and Extractable Power [J].
Berger, Andreas ;
Agostinelli, Matteo ;
Vesti, Sanna ;
Oliver, Jesus A. ;
Cobos, Jose A. ;
Huemer, Mario .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2015, 30 (11) :6338-6348
[3]   Modeling and η-α-Pareto Optimization of Inductive Power Transfer Coils for Electric Vehicles [J].
Bosshard, Roman ;
Kolar, Johann Walter ;
Muehlethaler, Jonas ;
Stevanovic, Ivica ;
Wunsch, Bernhard ;
Canales, Francisco .
IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS, 2015, 3 (01) :50-64
[4]   Design and Experimentation of WPT Charger for Electric City Car [J].
Buja, Giuseppe ;
Bertoluzzo, Manuele ;
Mude, Kishore Naik .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2015, 62 (12) :7436-7447
[5]   Harmonic-Based Phase-Shifted Control of Inductively Coupled Power Transfer [J].
Cai, Hua ;
Shi, Liming ;
Li, Yaohua .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2014, 29 (02) :594-602
[6]   Use of Transmitter-Side Electrical Information to Estimate Mutual Inductance and Regulate Receiver-Side Power in Wireless Inductive Link [J].
Chow, Jeff Po-Wa ;
Chung, Henry Shu-Hung ;
Cheng, Chun-Sing .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2016, 31 (09) :6079-6091
[7]  
Covic G. A., 2015, IEEE J EMERG SEL TOP, V1, P28
[8]   Design of a High-Efficiency Wireless Power Transfer System With Intermediate Coils for the On-Board Chargers of Electric Vehicles [J].
Duc Hung Tran ;
Van Binh Vu ;
Choi, Woojin .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2018, 33 (01) :175-187
[9]  
Fan M., 2014, IEEE T IND INFORM, V10, P1971
[10]   Compensation of Cross Coupling in Multiple-Receiver Wireless Power Transfer Systems [J].
Fu, Minfan ;
Zhang, Tong ;
Zhu, Xinen ;
Luk, Patrick Chi-Kwong ;
Ma, Chengbin .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2016, 12 (02) :474-482