BMO spaces related to Schrodinger operators with potentials satisfying a reverse Holder inequality

被引:176
作者
Dziubanski, J
Garrigós, G
Martínez, T
Torrea, JL
Zienkiewicz, J
机构
[1] Univ Wroclaw, Inst Math, PL-50384 Wroclaw, Poland
[2] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
关键词
D O I
10.1007/s00209-004-0701-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We identify the dual space of the Hardy-type space H-L(1) related to the time independent Schrodinger operator L = -Delta + V, a potential satisfying a reverse Holder inequality, as a BMO-type space BMOL. We prove the boundedness in this space of the versions of some classical operators associted to L (Hardy-Littlewood, semigroup and Poisson maximal functions, square function, fractional integral operator). We also get a characterization of BMOL in terms of Carlesson measures.
引用
收藏
页码:329 / 356
页数:28
相关论文
共 11 条
[1]   WEAK-L INFINITY AND BMO [J].
BENNETT, C ;
DEVORE, RA ;
SHARPLEY, R .
ANNALS OF MATHEMATICS, 1981, 113 (03) :601-611
[2]  
Dziubanski J, 1999, REV MAT IBEROAM, V15, P279
[3]  
DZIUBANSKI J, IN PRESS C MATH
[4]  
Dziubanski J., 2002, Banach Center Publ., V56, P45
[5]   LOCAL VERSION OF REAL HARDY SPACES [J].
GOLDBERG, D .
DUKE MATHEMATICAL JOURNAL, 1979, 46 (01) :27-42
[6]   An estimate on the heat kernel of magnetic Schrodinger operators and uniformly elliptic operators with non-negative potentials [J].
Kurata, K .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2000, 62 :885-903
[7]   L(P) ESTIMATES FOR SCHRODINGER-OPERATORS WITH CERTAIN POTENTIALS [J].
SHEN, ZW .
ANNALES DE L INSTITUT FOURIER, 1995, 45 (02) :513-546
[8]  
Stein E., 1970, TOPICS HARMONIC ANAL
[9]  
Stein E M., 1993, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals
[10]  
STEMPAK K, ENDPOINT RESULTS POI