Improvement of microstructure, mechanical properties and cutting performance of Ti(C,N)-based cermets by ultrafine La2O3 additions

被引:31
|
作者
Kang, Xiyue [1 ]
Lin, Nan [2 ]
He, Yuehui [1 ]
Zhang, Qiankun [3 ]
Zhang, Meimei [1 ]
Yan, Yan [4 ]
Liu, Yi [4 ]
机构
[1] Cent South Univ, State Key Lab Powder Met, Changsha 410083, Peoples R China
[2] Hunan Univ, Coll Mat Sci & Engn, Changsha 410082, Hunan, Peoples R China
[3] Xiangtan Univ, Sch Mech Engn, Xiangtan 411105, Peoples R China
[4] METCERA Crop Ltd, Chengdu 610000, Peoples R China
基金
中国国家自然科学基金;
关键词
Ti(C; N)-based cermets; Ultrafine La2O3; Microstructure; Core-rim structure; Mechanical properties; WC-10CO ALLOYS; TOOL WEAR; RIM PHASE; WC-CO; Y2O3; TI(C; TAC;
D O I
10.1016/j.ceramint.2021.03.328
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Ti(C,N)-WC-Mo2C-TaC-Co-Ni cermets with various content of La2O3 were prepared by gas-pressure sintering at 1450 degrees C. The effects of ultrafine La2O3 additions (0, 0.05, 0.1 and 0.2 wt%) on the microstructure, mechanical properties, wear resistance and cutting performance of cermets were explored. In the microstructure of cermets, the La2O3 particles and dissolved La element in binder phases were observed, which could inhibit the dissolutionprecipitation process of ceramics phases during liquid-sintering. Furthermore, the La2O3 could absorb and react with the impurity Al element with low melting point from raw powders, avoiding the appearance of liquid phase at the low temperature and partial overheating during sintering process. These mechanisms could inhibit the abnormal growth of Ti(C,N) core-(Ti,W,Mo,Ta)(C,N) rim structures effectively, leading to the thinning of brittle rim phases and coarsening of wear-proof Ti(C,N) particles. The decrease of proportion of brittle rim phase and ultrafine Ti(C,N) particles promoted the fracture toughness. The increase of proportion and grain size of Ti(C,N) improved the hardness, wear resistance and cutting performance significantly. However, the excessive addition of La2O3 would result in the agglomeration of La2O3, causing the sharp decline of mechanical properties and cutting performance. The cermet with 0.1 wt% La2O3 addition possessed the optimal mechanical properties with Vickers hardness, transverse rupture strength and fracture toughness of 1710 (HV30) Kgf/mm2, 2480 MPa and 11.7 MPa m1/2, respectively.
引用
收藏
页码:19934 / 19944
页数:11
相关论文
共 50 条
  • [21] Effect of heating rate on the mechanical properties and microstructure of Ti(C,N)-based cermets
    Xu, Qingzhong
    Ai, Xing
    Zhao, Jun
    Zhang, Hongshan
    Qin, Wenzhen
    Gong, Feng
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2015, 628 : 281 - 287
  • [22] Effect of sintering temperature on the microstructure and mechanical properties of Ti(C, N)-based cermets
    Yonglin Yan
    Yong Zheng
    Haijun Yu
    Haijian Bu
    Xin Cheng
    Nengwei Zhao
    Powder Metallurgy and Metal Ceramics, 2007, 46 : 449 - 453
  • [23] Effects of metal binder on the microstructure and mechanical properties of Ti(C,N)-based cermets
    Xu, Qingzhong
    Ai, Xing
    Zhao, Jun
    Gong, Feng
    Pang, Jiming
    Wang, Yintao
    JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 644 : 663 - 672
  • [24] Effect of sintering temperature on the microstructure and mechanical properties of Ti(C, N)-based cermets
    Yan, Yonglin
    Zheng, Yong
    Yu, Haijun
    Bu, Haijian
    Cheng, Xin
    Zhao, Nengwei
    POWDER METALLURGY AND METAL CERAMICS, 2007, 46 (9-10) : 449 - 453
  • [25] Effect of powder size on microstructure and mechanical properties of Ti(C,N) based cermets
    Liu, N.
    Zhou, J.
    Zhang, X. B.
    Rong, C. L.
    ADVANCES IN APPLIED CERAMICS, 2007, 106 (05) : 247 - 254
  • [26] MECHANICAL PROPERTIES AND MICROSTRUCTURES OF Ti(C,N) BASED CERMETS
    Liu Ning(Department of Materials Science and Engineering
    Cui Kun(Huazhong University of Science and Technology
    Transactions of Nonferrous Metals Society of China, 1996, (04) : 117 - 121
  • [27] Microstructure and properties of CVD coated Ti(C, N)-based cermets with varying WC additions
    You, Qianbing
    Xiong, Ji
    Guo, Zhixing
    Liu, Junbo
    Yang, Tian'en
    Qin, Chengtao
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2019, 81 : 299 - 306
  • [28] Effects of molybdenum on the microstructure and mechanical properties of Ti(C,N)-based cermets with low Ni
    Wang, SY
    Xiong, WH
    Yan, MS
    Fan, C
    RARE METALS, 2006, 25 (01) : 90 - 95
  • [30] Ultrafine (Ti, M) (C, N)-based cermets with optimal mechanical properties
    Liu, Ying
    Jin, Yongzhong
    Yu, Haijun
    Ye, Jinwen
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2011, 29 (01) : 104 - 107