Fracture toughness of 304L austenitic stainless steel produced by laser powder b e d fusion

被引:32
|
作者
Kumar, Punit [1 ]
Zhu, Zhiguang [2 ]
Nai, Sharon M. L. [2 ]
Narayan, R. L. [3 ]
Ramamurty, U. [1 ,4 ]
机构
[1] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore 639798, Singapore
[2] Singapore Inst Mfg Technol, 73 Nanyang Dr, Singapore 637662, Singapore
[3] Indian Inst Technol, Dept Mat Sci & Engn, New Delhi 110016, India
[4] ASTAR, Inst Mat Res & Engn, Singapore 138634, Singapore
关键词
Additive manufacturing; Austenitic steels; Fracture; Toughness; Martensitic phase transformation; MECHANICAL-PROPERTIES; PHASE-TRANSFORMATION; HARDENING BEHAVIOR; HEAT-TREATMENT; STRENGTH; MICROSTRUCTURE; TEMPERATURE; MARTENSITE; ENERGY;
D O I
10.1016/j.scriptamat.2021.114002
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Uniaxial tensile response and J integral-resistance behavior of 304L austenitic stainless steel manufactured by laser powder bed fusion process (LPBF) were investigated. The steel undergoes transformation induced plasticity (TRIP) at room temperature, resulting in high fracture toughness (J(Q)) values combined with high strength (sigma(Y)) and ductility. Upon increasing the temperature to 75 degrees C, TRIP becomes inactive, and the deformation mechanism is dominated by dislocation glide and twinning. This leads to a substantial reduction in J(Q) and marked anisotropy, while sigma(Y) remains unchanged. Significance of these results in terms of fracture properties of steels manufactured via LPBF processes is discussed. (c) 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Local valence analysis of 316L austenitic stainless steel produced by laser powder bed fusion
    Sato, Kazuhisa
    Takagi, Shunya
    Ichikawa, Satoshi
    Ishimoto, Takuya
    Nakano, Takayoshi
    MATERIALS LETTERS, 2024, 372
  • [32] Stress Corrosion Cracking Behavior of Austenitic Stainless Steel 316L Produced Using Laser-Based Powder Bed Fusion
    Santamaria, Ricardo
    Wang, Ke
    Salasi, Mobin
    Salem, Mehdi
    Lours, Philippe
    Iannuzzi, Mariano
    Quadir, Md Zakaria
    CORROSION, 2023, 79 (08) : 944 - 956
  • [33] Oxide dispersion strengthened 304 L stainless steel produced by ink jetting and laser powder bed fusion
    Paul, Brian K.
    Lee, Kijoon
    He, Yujuan
    Ghayoor, Milad
    Chang, Chih-hung
    Pasebani, Somayeh
    CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2020, 69 (01) : 193 - 196
  • [34] Heat Treatment Effect on the Corrosion Resistance of 316L Stainless Steel Produced by Laser Powder Bed Fusion
    Sangoi, Kevin
    Nadimi, Mahdi
    Song, Jie
    Fu, Yao
    METALS, 2025, 15 (01)
  • [35] Applications of Wrought Austenitic Stainless Steel Corrosion Testing to Laser Powder Bed Fusion 316L
    Macatangay, Duane Armell T.
    Conrades, Jenna M.
    Brunner, Keegan L.
    Kelly, Robert G.
    CORROSION, 2022, 78 (01) : 13 - 24
  • [36] Effect of grain size on pitting corrosion of 304L austenitic stainless steel
    Aghuy, A. Abbasi
    Zakeri, M.
    Moayed, M. H.
    Mazinani, M.
    CORROSION SCIENCE, 2015, 94 : 368 - 376
  • [37] Fatigue crack growth rate and fracture toughness evaluation of 15-5 precipitation hardening stainless steel fabricated by laser powder bed fusion process
    Ramadas, Harikrishnan
    Nath, Ashish Kumar
    Sarkar, Sagar
    Ganesh, P.
    Kaul, Rakesh
    Majumdar, Jyotsna Dutta
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 861
  • [38] Evaluating impact performance of a selective laser melted 304L stainless steel with weak texture
    Zhao, Jianguang
    Hou, Juan
    Chen, Liang
    Dai, Binbin
    Xiong, Xiaojing
    Tan, Lei
    Zhang, Kai
    Huang, Aijun
    MATERIALS TODAY COMMUNICATIONS, 2020, 25
  • [39] Comprehensive study of deuterium-induced effects in austenitic stainless steel AISI 304L
    Roehsler, Andreas
    Sobol, Oded
    Unger, Wolfgang E. S.
    Boellinghaus, Thomas
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (23) : 12228 - 12238
  • [40] Optimization of process parameters for plasma arc welding of austenitic stainless steel (304L) with low carbon steel (A-36)
    Fatima, Shane
    Khan, Mushtaq
    Jaffery, Syed Husain Imran
    Ali, Liaqat
    Mujahid, Mohammad
    Butt, Shahid I.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART L-JOURNAL OF MATERIALS-DESIGN AND APPLICATIONS, 2016, 230 (02) : 640 - 653