Using High-Entropy Configuration Strategy to Design Na-Ion Layered Oxide Cathodes with Superior Electrochemical Performance and Thermal Stability

被引:301
作者
Ding, Feixiang [1 ,2 ]
Zhao, Chenglong [1 ]
Xiao, Dongdong [1 ]
Rong, Xiaohui [1 ,2 ,3 ,4 ]
Wang, Haibo [1 ]
Li, Yuqi [3 ]
Yang, Yang [1 ,3 ]
Lu, Yaxiang [1 ,2 ]
Hu, Yong-Sheng [1 ,2 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Key Lab Renewable Energy, Beijing Key Lab New Energy Mat & Devices, Beijing Natl Lab Condensed Matter Phys,Inst Phys, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Inst Phys, Huairou Div, Beijing 101400, Peoples R China
[3] Univ Chinese Acad Sci, Coll Mat Sci & Optoelect Technol, Beijing 100049, Peoples R China
[4] Yangtze River Delta Phys Res Ctr Co Ltd, Liyang 213300, Peoples R China
基金
中国博士后科学基金;
关键词
PHASE;
D O I
10.1021/jacs.2c02353
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Na-ion layered oxide cathodes (NaxTMO2, TM = transition metal ion(s)), as an analogue of lithium layered oxide cathodes (such as LiCoO2, LiNixCoyMn1-x-yO2), have received growing attention with the development of Na-ion batteries. However, due to the larger Na+ radius and stronger Na+-Na+ electrostatic repulsion in NaO2 slabs, some undesired phase transitions are observed in NaxTMO2. Herein, we report a high-entropy configuration strategy for NaxTMO2 cathode materials, in which multicomponent TMO2 slabs with enlarged interlayer spacing help strengthen the whole skeleton structure of layered oxides through mitigating Jahn-Teller distortion, Na+/vacancy ordering, and lattice parameter changes. The strengthened skeleton structure with a modulated particle morphology dramatically improves the Na+ transport kinetics and suppresses intragranular fatigue cracks and TM dissolution, thus leading to highly improved performances. Furthermore, the elaborate high-entropy TMO2 slabs enhance the TM-O bonding energy to restrain oxygen release and thermal runaway, benefiting for the improvement of thermal safety.
引用
收藏
页码:8286 / 8295
页数:10
相关论文
共 45 条
[1]   Electrochemical investigation of the P2-NaxCoO2 phase diagram [J].
Berthelot, R. ;
Carlier, D. ;
Delmas, C. .
NATURE MATERIALS, 2011, 10 (01) :74-U3
[2]   STUDY OF THE NAXCRO2 AND NAXNIO2 SYSTEMS BY ELECTROCHEMICAL DESINTERCALATION [J].
BRACONNIER, JJ ;
DELMAS, C ;
HAGENMULLER, P .
MATERIALS RESEARCH BULLETIN, 1982, 17 (08) :993-1000
[3]   A Novel Ni-rich O3-Na[Ni0.60Fe0.25M 0.15]O2 Cathode for Na-ion Batteries [J].
Ding, Feixiang ;
Zhao, Chenglong ;
Zhou, Dong ;
Meng, Qingshi ;
Xiao, Dongdong ;
Zhang, Qiangqiang ;
Niu, Yaoshen ;
Li, Yuqi ;
Rong, Xiaohui ;
Lu, Yaxiang ;
Chen, Liquan ;
Hu, Yong-Sheng .
ENERGY STORAGE MATERIALS, 2020, 30 (30) :420-430
[4]   High-entropy alloys [J].
George, Easo P. ;
Raabe, Dierk ;
Ritchie, Robert O. .
NATURE REVIEWS MATERIALS, 2019, 4 (08) :515-534
[5]   Unlocking Sustainable Na-Ion Batteries into Industry [J].
Hu, Yong-Sheng ;
Li, Yuqi .
ACS ENERGY LETTERS, 2021, 6 (11) :4115-4117
[6]   The role of M@Ni6 superstructure units in honeycomb-ordered layered oxides for Li/Na ion batteries [J].
Hu, Zongxiang ;
Weng, Mouyi ;
Chen, Zhefeng ;
Tan, Wenchang ;
Li, Shunning ;
Pan, Feng .
NANO ENERGY, 2021, 83
[7]   Non-topotactic reactions enable high rate capability in Li-rich cathode materials [J].
Huang, Jianping ;
Zhong, Peichen ;
Ha, Yang ;
Kwon, Deok-Hwang ;
Crafton, Matthew J. ;
Tian, Yaosen ;
Balasubramanian, Mahalingam ;
McCloskey, Bryan D. ;
Yang, Wanli ;
Ceder, Gerbrand .
NATURE ENERGY, 2021, 6 (07) :706-714
[8]   Sodium-ion batteries: present and future [J].
Hwang, Jang-Yeon ;
Myung, Seung-Taek ;
Sun, Yang-Kook .
CHEMICAL SOCIETY REVIEWS, 2017, 46 (12) :3529-3614
[9]   Radially aligned hierarchical columnar structure as a cathode material for high energy density sodium-ion batteries [J].
Hwang, Jang-Yeon ;
Oh, Seung-Min ;
Myung, Seung-Taek ;
Chung, Kyung Yoon ;
Belharouak, Ilias ;
Sun, Yang-Kook .
NATURE COMMUNICATIONS, 2015, 6
[10]   SODIUM DEINTERCALATION FROM ALPHA-NAFEO2 [J].
KIKKAWA, S ;
MIYAZAKI, S ;
KOIZUMI, M .
MATERIALS RESEARCH BULLETIN, 1985, 20 (04) :373-377