TorchMD: A Deep Learning Framework for Molecular Simulations

被引:159
作者
Doerr, Stefan [1 ]
Majewski, Maciej [2 ]
Perez, Adria [2 ]
Kramer, Andreas [3 ]
Clementi, Cecilia [4 ,5 ]
Noe, Frank [3 ,4 ,5 ]
Giorgino, Toni [6 ,7 ]
De Fabritiis, Gianni [1 ,2 ,8 ]
机构
[1] Acellera, Barcelona 08005, Spain
[2] Univ Pompeu Fabra, Computat Sci Lab, Barcelona 08003, Spain
[3] Freie Univ, Dept Math & Comp Sci, D-14195 Berlin, Germany
[4] Freie Univ, Dept Phys, D-14195 Berlin, Germany
[5] Rice Univ, Dept Chem, POB 1892, Houston, TX 77005 USA
[6] Natl Res Council CNR IBF, Biophys Inst, I-20133 Milan, Italy
[7] Univ Milan, Dept Biosci, I-20133 Milan, Italy
[8] Inst Catalana Recerca & Estudis Avancats, Barcelona 08010, Spain
关键词
DYNAMICS SIMULATIONS; MODELS;
D O I
10.1021/acs.jctc.0c01343
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Molecular dynamics simulations provide a mechanistic description of molecules by relying on empirical potentials. The quality and transferability of such potentials can be improved leveraging data-driven models derived with machine learning approaches. Here, we present TorchMD, a framework for molecular simulations with mixed classical and machine learning potentials. All force computations including bond, angle, dihedral, Lennard-Jones, and Coulomb interactions are expressed as PyTorch arrays and operations. Moreover, TorchMD enables learning and simulating neural network potentials. We validate it using standard Amber all-atom simulations, learning an ab initio potential, performing an end-to-end training, and finally learning and simulating a coarse-grained model for protein folding. We believe that TorchMD provides a useful tool set to support molecular simulations of machine learning potentials. Code and data are freely available at github.com/torchmd.
引用
收藏
页码:2355 / 2363
页数:9
相关论文
共 54 条
[1]   Simple few-state models reveal hidden complexity in protein folding [J].
Beauchamp, Kyle A. ;
McGibbon, Robert ;
Lin, Yu-Shan ;
Pande, Vijay S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (44) :17807-17813
[2]  
Bradbury J., 2018, JAX: composable transformations of Python+NumPy programs
[3]   High-Throughput All-Atom Molecular Dynamics Simulations Using Distributed Computing [J].
Buch, I. ;
Harvey, M. J. ;
Giorgino, T. ;
Anderson, D. P. ;
De Fabritiis, G. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2010, 50 (03) :397-403
[4]  
Chodera J. D., 2018, ESCAPING ATOM TYPES, DOI [10.1101/286542v2, DOI 10.1101/286542V2]
[5]   FCHL revisited: Faster and more accurate quantum machine learning [J].
Christensen, Anders S. ;
Bratholm, Lars A. ;
Faber, Felix A. ;
von Lilienfeld, O. Anatole .
JOURNAL OF CHEMICAL PHYSICS, 2020, 152 (04)
[7]   On-the-Fly Learning and Sampling of Ligand Binding by High-Throughput Molecular Simulations [J].
Doerr, S. ;
De Fabritiis, G. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2014, 10 (05) :2064-2069
[8]   OpenMM 7: Rapid development of high performance algorithms for molecular dynamics [J].
Eastman, Peter ;
Swails, Jason ;
Chodera, John D. ;
McGibbon, Robert T. ;
Zhao, Yutong ;
Beauchamp, Kyle A. ;
Wang, Lee-Ping ;
Simmonett, Andrew C. ;
Harrigan, Matthew P. ;
Stern, Chaya D. ;
Wiewiora, Rafal P. ;
Brooks, Bernard R. ;
Pande, Vijay S. .
PLOS COMPUTATIONAL BIOLOGY, 2017, 13 (07)
[9]  
Falcon W., 2019, GitHub
[10]  
Feenstra KA, 1999, J COMPUT CHEM, V20, P786, DOI 10.1002/(SICI)1096-987X(199906)20:8<786::AID-JCC5>3.0.CO