Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis

被引:238
作者
Zheng, Xiaobo [1 ]
Li, Beibei [1 ]
Wang, Qishun [1 ]
Wang, Dingsheng [1 ]
Li, Yadong [1 ]
机构
[1] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China
基金
国家重点研发计划; 北京市自然科学基金; 中国博士后科学基金;
关键词
dual-atom catalysts; atomically precise control; synthesis strategy; synergistic interactions; structure-performance relationships; OXYGEN REDUCTION REACTION; CO2 ELECTROREDUCTION PERFORMANCE; N-DOPED GRAPHENE; SINGLE-ATOM; ACTIVE-SITES; ORGANIC FRAMEWORKS; DUAL SITES; BIFUNCTIONAL ELECTROCATALYSTS; EVOLUTION REACTION; CARBON;
D O I
10.1007/s12274-022-4429-9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Supported atomically dispersed metal catalysts (ADMCs) have received enormous attention due to their high atom utilization efficiency, mass activity and excellent selectivity. Single-atom site catalysts (SACs) with monometal-center as the quintessential ADMCs have been extensively studied in the catalysis-related fields. Beyond SACs, novel atomically dispersed metal catalysts (NADMCs) with flexible active sites featuring two or more catalytically centers including dual-atom and triple-atom catalysts have drawn ever-increasing attention recently. Owing to the presence of multiple neighboring active sites, NADMCs could exhibit much higher activity and selectivity compared with SACs, especially in those complicated reactions with multi-step intermediates. This review comprehensively outlines the recent exciting advances on the NADMCs with emphasis on the deeper understanding of the synergistic interactions among multiple metal atoms and underlying structure-performance relationships. It starts with the systematical introduction of principal synthetic approaches for NADMCs highlighting the key issues of each fabrication method including the atomically precise control in the design of metal nuclearity, and then the state-of-the-art characterizations for identifying and monitoring the atomic structure of NADMCs are explored. Thereafter, the recent development of NADMCs in energy-related applications is systematically discussed. Finally, we provide some new insights into the remaining challenges and opportunities for the development of NADMCs.
引用
收藏
页码:7806 / 7839
页数:34
相关论文
共 265 条
[11]   Atomically Dispersed Copper-Platinum Dual Sites Alloyed with Palladium Nanorings Catalyze the Hydrogen Evolution Reaction [J].
Chao, Tingting ;
Luo, Xuan ;
Chen, Wenxing ;
Jiang, Bin ;
Ge, Jingjie ;
Lin, Yue ;
Wu, Geng ;
Wang, Xiaoqian ;
Hu, Yanmin ;
Zhuang, Zhongbin ;
Wu, Yuen ;
Hong, Xun ;
Li, Yadong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (50) :16047-16051
[12]   Dual Single-Atomic Ni-N4and Fe-N4Sites Constructing Janus Hollow Graphene for Selective Oxygen Electrocatalysis [J].
Chen, Jiangyue ;
Li, Hao ;
Fan, Chuang ;
Meng, Qingwei ;
Tang, Yawen ;
Qiu, Xiaoyu ;
Fu, Gengtao ;
Ma, Tianyi .
ADVANCED MATERIALS, 2020, 32 (30)
[13]   Low-Coordinate Iridium Oxide Confined on Graphitic Carbon Nitride for Highly Efficient Oxygen Evolution [J].
Chen, Jiayi ;
Cui, Peixin ;
Zhao, Guoqiang ;
Rui, Kun ;
Lao, Mengmeng ;
Chen, Yaping ;
Zheng, Xusheng ;
Jiang, Yinzhu ;
Pan, Hongge ;
Dou, Shi Xue ;
Sun, Wenping .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (36) :12540-12544
[14]   MOF Encapsulating N-Heterocyclic Carbene-Ligated Copper Single-Atom Site Catalyst towards Efficient Methane Electrosynthesis [J].
Chen, Shenghua ;
Li, Wen-Hao ;
Jiang, Wenjun ;
Yang, Jiarui ;
Zhu, Jiexin ;
Wang, Liqiang ;
Ou, Honghui ;
Zhuang, Zechao ;
Chen, Mingzhao ;
Sun, Xiaohui ;
Wang, Dingsheng ;
Li, Yadong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (04)
[15]   Lewis Acid Site-Promoted Single-Atomic Cu Catalyzes Electrochemical CO2 Methanation [J].
Chen, Shenghua ;
Wang, Bingqing ;
Zhu, Jiexin ;
Wang, Liqiang ;
Ou, Honghui ;
Zhang, Zedong ;
Liang, Xiao ;
Zheng, Lirong ;
Zhou, Liang ;
Su, Ya-Qiong ;
Wang, Dingsheng ;
Li, Yadong .
NANO LETTERS, 2021, 21 (17) :7325-7331
[16]   Interfacial engineering of Ni/V2O3for hydrogen evolution reaction [J].
Chen, Yang ;
Rao, Yuan ;
Wang, Rongzhi ;
Yu, Yanan ;
Li, Qiulin ;
Bao, Shujuan ;
Xu, Maowen ;
Yue, Qin ;
Zhang, Yanning ;
Kang, Yijin .
NANO RESEARCH, 2020, 13 (09) :2407-2412
[17]   Hexagonal Boron Nitride as a Multifunctional Support for Engineering Efficient Electrocatalysts toward the Oxygen Reduction Reaction [J].
Chen, Yaping ;
Cai, Jinyan ;
Li, Peng ;
Zhao, Guoqiang ;
Wang, Gongming ;
Jiang, Yinzhu ;
Chen, Jun ;
Dou, Shi Xue ;
Pan, Hongge ;
Sun, Wenping .
NANO LETTERS, 2020, 20 (09) :6807-6814
[18]   Atomic-Level Modulation of Electronic Density at Cobalt Single-Atom Sites Derived from Metal-Organic Frameworks: Enhanced Oxygen Reduction Performance [J].
Chen, Yuanjun ;
Gao, Rui ;
Ji, Shufang ;
Li, Haijing ;
Tang, Kun ;
Jiang, Peng ;
Hu, Haibo ;
Zhang, Zedong ;
Hao, Haigang ;
Qu, Qingyun ;
Liang, Xiao ;
Chen, Wenxing ;
Dong, Juncai ;
Wang, Dingsheng ;
Li, Yadong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (06) :3212-3221
[19]   Computational Screening of Efficient Single-Atom Catalysts Based on Graphitic Carbon Nitride (g-C3N4) for Nitrogen Electroreduction [J].
Chen, Zhe ;
Zhao, Jingxiang ;
Cabrera, Carlos R. ;
Chen, Zhongfang .
SMALL METHODS, 2019, 3 (06)
[20]   Single or Double: Which Is the Altar of Atomic Catalysts for Nitrogen Reduction Reaction? [J].
Chen, Zhi Wen ;
Yan, Jun-Min ;
Jiang, Qing .
SMALL METHODS, 2019, 3 (06)