A Note on Exact Minimum Degree Threshold for Fractional Perfect Matchings

被引:0
作者
Lu, Hongliang [1 ]
Yu, Xingxing [2 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
[2] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
基金
中国国家自然科学基金;
关键词
Matching; Fractional matching; Perfect matching; UNIFORM HYPERGRAPHS; ERDOS;
D O I
10.1007/s00373-022-02475-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Rodl, Rucinski, and Szemeredi determined the minimum (k - 1)-degree threshold for the existence of fractional perfect matchings in k-uniform hypergrahs, and Kiihn, Osthus, and Townsend extended this result by asymptotically determining the d-degree threshold for the range k - 1 > d >= k/2. In this note, we prove the following exact degree threshold: let k, d be positive integers with k >= 4 and k - 1 > d >= k/2, and let n be any integer with n >= 2k (k - 1) + 1. Then any n-vertex k-uniform hypergraph with minimum d-degree delta(d) (H) > [GRAPHICS] - [GRAPHICS] contains a fractional perfect matching This lower bound on the minimum d-degree is best possible. We also determine the minimum d-degree threshold for the existence of fractional matchings of size s, where 0 < s <= n/k (when k/2 <= d <= k - 1), or with s large enough and s <= n/k (when 2k/5 < d < k/2).
引用
收藏
页数:8
相关论文
共 10 条